Metamath Proof Explorer


Theorem trnsetN

Description: The set of translations for a fiducial atom D . (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses trnset.a A=AtomsK
trnset.s S=PSubSpK
trnset.p +˙=+𝑃K
trnset.o ˙=𝑃K
trnset.w W=WAtomsK
trnset.m M=PAutK
trnset.l L=DilK
trnset.t T=TrnK
Assertion trnsetN KBDATD=fLD|qWDrWDq+˙fq˙D=r+˙fr˙D

Proof

Step Hyp Ref Expression
1 trnset.a A=AtomsK
2 trnset.s S=PSubSpK
3 trnset.p +˙=+𝑃K
4 trnset.o ˙=𝑃K
5 trnset.w W=WAtomsK
6 trnset.m M=PAutK
7 trnset.l L=DilK
8 trnset.t T=TrnK
9 1 2 3 4 5 6 7 8 trnfsetN KBT=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d
10 9 fveq1d KBTD=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙dD
11 fveq2 d=DLd=LD
12 fveq2 d=DWd=WD
13 sneq d=Dd=D
14 13 fveq2d d=D˙d=˙D
15 14 ineq2d d=Dq+˙fq˙d=q+˙fq˙D
16 14 ineq2d d=Dr+˙fr˙d=r+˙fr˙D
17 15 16 eqeq12d d=Dq+˙fq˙d=r+˙fr˙dq+˙fq˙D=r+˙fr˙D
18 12 17 raleqbidv d=DrWdq+˙fq˙d=r+˙fr˙drWDq+˙fq˙D=r+˙fr˙D
19 12 18 raleqbidv d=DqWdrWdq+˙fq˙d=r+˙fr˙dqWDrWDq+˙fq˙D=r+˙fr˙D
20 11 19 rabeqbidv d=DfLd|qWdrWdq+˙fq˙d=r+˙fr˙d=fLD|qWDrWDq+˙fq˙D=r+˙fr˙D
21 eqid dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d
22 fvex LDV
23 22 rabex fLD|qWDrWDq+˙fq˙D=r+˙fr˙DV
24 20 21 23 fvmpt DAdAfLd|qWdrWdq+˙fq˙d=r+˙fr˙dD=fLD|qWDrWDq+˙fq˙D=r+˙fr˙D
25 10 24 sylan9eq KBDATD=fLD|qWDrWDq+˙fq˙D=r+˙fr˙D