Metamath Proof Explorer


Theorem trnfsetN

Description: The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses trnset.a A=AtomsK
trnset.s S=PSubSpK
trnset.p +˙=+𝑃K
trnset.o ˙=𝑃K
trnset.w W=WAtomsK
trnset.m M=PAutK
trnset.l L=DilK
trnset.t T=TrnK
Assertion trnfsetN KCT=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d

Proof

Step Hyp Ref Expression
1 trnset.a A=AtomsK
2 trnset.s S=PSubSpK
3 trnset.p +˙=+𝑃K
4 trnset.o ˙=𝑃K
5 trnset.w W=WAtomsK
6 trnset.m M=PAutK
7 trnset.l L=DilK
8 trnset.t T=TrnK
9 elex KCKV
10 fveq2 k=KAtomsk=AtomsK
11 10 1 eqtr4di k=KAtomsk=A
12 fveq2 k=KDilk=DilK
13 12 7 eqtr4di k=KDilk=L
14 13 fveq1d k=KDilkd=Ld
15 fveq2 k=KWAtomsk=WAtomsK
16 15 5 eqtr4di k=KWAtomsk=W
17 16 fveq1d k=KWAtomskd=Wd
18 fveq2 k=K+𝑃k=+𝑃K
19 18 3 eqtr4di k=K+𝑃k=+˙
20 19 oveqd k=Kq+𝑃kfq=q+˙fq
21 fveq2 k=K𝑃k=𝑃K
22 21 4 eqtr4di k=K𝑃k=˙
23 22 fveq1d k=K𝑃kd=˙d
24 20 23 ineq12d k=Kq+𝑃kfq𝑃kd=q+˙fq˙d
25 19 oveqd k=Kr+𝑃kfr=r+˙fr
26 25 23 ineq12d k=Kr+𝑃kfr𝑃kd=r+˙fr˙d
27 24 26 eqeq12d k=Kq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kdq+˙fq˙d=r+˙fr˙d
28 17 27 raleqbidv k=KrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kdrWdq+˙fq˙d=r+˙fr˙d
29 17 28 raleqbidv k=KqWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kdqWdrWdq+˙fq˙d=r+˙fr˙d
30 14 29 rabeqbidv k=KfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd=fLd|qWdrWdq+˙fq˙d=r+˙fr˙d
31 11 30 mpteq12dv k=KdAtomskfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d
32 df-trnN Trn=kVdAtomskfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd
33 31 32 1 mptfvmpt KVTrnK=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d
34 8 33 eqtrid KVT=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d
35 9 34 syl KCT=dAfLd|qWdrWdq+˙fq˙d=r+˙fr˙d