Metamath Proof Explorer


Theorem trpredelss

Description: Given a transitive predecessor Y of X , the transitive predecessors of Y form a subclass of the transitive predecessors of X . (Contributed by Scott Fenton, 25-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion trpredelss X A R Se A Y TrPred R A X TrPred R A Y TrPred R A X

Proof

Step Hyp Ref Expression
1 setlikespec X A R Se A Pred R A X V
2 trpredss Pred R A X V TrPred R A X A
3 1 2 syl X A R Se A TrPred R A X A
4 3 sselda X A R Se A Y TrPred R A X Y A
5 simplr X A R Se A Y TrPred R A X R Se A
6 trpredtr X A R Se A y TrPred R A X Pred R A y TrPred R A X
7 6 ralrimiv X A R Se A y TrPred R A X Pred R A y TrPred R A X
8 7 adantr X A R Se A Y TrPred R A X y TrPred R A X Pred R A y TrPred R A X
9 trpredtr X A R Se A Y TrPred R A X Pred R A Y TrPred R A X
10 9 imp X A R Se A Y TrPred R A X Pred R A Y TrPred R A X
11 trpredmintr Y A R Se A y TrPred R A X Pred R A y TrPred R A X Pred R A Y TrPred R A X TrPred R A Y TrPred R A X
12 4 5 8 10 11 syl22anc X A R Se A Y TrPred R A X TrPred R A Y TrPred R A X
13 12 ex X A R Se A Y TrPred R A X TrPred R A Y TrPred R A X