Metamath Proof Explorer


Theorem tskun

Description: The union of two elements of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskun TTarskiTrTATBTABT

Proof

Step Hyp Ref Expression
1 uniprg ATBTAB=AB
2 1 3adant1 TTarskiTrTATBTAB=AB
3 simp1l TTarskiTrTATBTTTarski
4 simp1r TTarskiTrTATBTTrT
5 tskpr TTarskiATBTABT
6 5 3adant1r TTarskiTrTATBTABT
7 tskuni TTarskiTrTABTABT
8 3 4 6 7 syl3anc TTarskiTrTATBTABT
9 2 8 eqeltrrd TTarskiTrTATBTABT