Metamath Proof Explorer


Theorem ttglemOLD

Description: Obsolete version of ttglem as of 29-Oct-2024. Lemma for ttgbas and ttgvsca . (Contributed by Thierry Arnoux, 15-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ttgval.n G = to𝒢 Tarski H
ttglemOLD.2 E = Slot N
ttglemOLD.3 N
ttglemOLD.4 N < 16
Assertion ttglemOLD E H = E G

Proof

Step Hyp Ref Expression
1 ttgval.n G = to𝒢 Tarski H
2 ttglemOLD.2 E = Slot N
3 ttglemOLD.3 N
4 ttglemOLD.4 N < 16
5 2 3 ndxid E = Slot E ndx
6 3 nnrei N
7 6 4 ltneii N 16
8 2 3 ndxarg E ndx = N
9 itvndx Itv ndx = 16
10 8 9 neeq12i E ndx Itv ndx N 16
11 7 10 mpbir E ndx Itv ndx
12 5 11 setsnid E H = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x
13 1nn0 1 0
14 6nn0 6 0
15 7nn 7
16 6lt7 6 < 7
17 13 14 15 16 declt 16 < 17
18 6nn 6
19 13 18 decnncl 16
20 19 nnrei 16
21 13 15 decnncl 17
22 21 nnrei 17
23 6 20 22 lttri N < 16 16 < 17 N < 17
24 4 17 23 mp2an N < 17
25 6 24 ltneii N 17
26 lngndx Line 𝒢 ndx = 17
27 8 26 neeq12i E ndx Line 𝒢 ndx N 17
28 25 27 mpbir E ndx Line 𝒢 ndx
29 5 28 setsnid E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
30 12 29 eqtri E H = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
31 eqid Base H = Base H
32 eqid - H = - H
33 eqid H = H
34 eqid Itv G = Itv G
35 1 31 32 33 34 ttgval H V G = H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z Itv G = x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x
36 35 simpld H V G = H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
37 36 fveq2d H V E G = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
38 30 37 eqtr4id H V E H = E G
39 2 str0 = E
40 fvprc ¬ H V E H =
41 fvprc ¬ H V to𝒢 Tarski H =
42 1 41 eqtrid ¬ H V G =
43 42 fveq2d ¬ H V E G = E
44 39 40 43 3eqtr4a ¬ H V E H = E G
45 38 44 pm2.61i E H = E G