Metamath Proof Explorer


Theorem tustps

Description: A constructed uniform space is a topological space. (Contributed by Thierry Arnoux, 25-Jan-2018)

Ref Expression
Hypothesis tuslem.k K=toUnifSpU
Assertion tustps UUnifOnXKTopSp

Proof

Step Hyp Ref Expression
1 tuslem.k K=toUnifSpU
2 utoptopon UUnifOnXunifTopUTopOnX
3 eqid unifTopU=unifTopU
4 1 3 tustopn UUnifOnXunifTopU=TopOpenK
5 1 tusbas UUnifOnXX=BaseK
6 5 fveq2d UUnifOnXTopOnX=TopOnBaseK
7 2 4 6 3eltr3d UUnifOnXTopOpenKTopOnBaseK
8 eqid BaseK=BaseK
9 eqid TopOpenK=TopOpenK
10 8 9 istps KTopSpTopOpenKTopOnBaseK
11 7 10 sylibr UUnifOnXKTopSp