Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | txopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | txbasex | |
3 | bastg | |
|
4 | 2 3 | syl | |
5 | 4 | adantr | |
6 | eqid | |
|
7 | xpeq1 | |
|
8 | 7 | eqeq2d | |
9 | xpeq2 | |
|
10 | 9 | eqeq2d | |
11 | 8 10 | rspc2ev | |
12 | 6 11 | mp3an3 | |
13 | xpexg | |
|
14 | eqid | |
|
15 | 14 | elrnmpog | |
16 | 13 15 | syl | |
17 | 12 16 | mpbird | |
18 | 17 | adantl | |
19 | 5 18 | sseldd | |
20 | 1 | txval | |
21 | 20 | adantr | |
22 | 19 21 | eleqtrrd | |