Metamath Proof Explorer


Theorem txopn

Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion txopn RVSWARBSA×BR×tS

Proof

Step Hyp Ref Expression
1 eqid ranuR,vSu×v=ranuR,vSu×v
2 1 txbasex RVSWranuR,vSu×vV
3 bastg ranuR,vSu×vVranuR,vSu×vtopGenranuR,vSu×v
4 2 3 syl RVSWranuR,vSu×vtopGenranuR,vSu×v
5 4 adantr RVSWARBSranuR,vSu×vtopGenranuR,vSu×v
6 eqid A×B=A×B
7 xpeq1 u=Au×v=A×v
8 7 eqeq2d u=AA×B=u×vA×B=A×v
9 xpeq2 v=BA×v=A×B
10 9 eqeq2d v=BA×B=A×vA×B=A×B
11 8 10 rspc2ev ARBSA×B=A×BuRvSA×B=u×v
12 6 11 mp3an3 ARBSuRvSA×B=u×v
13 xpexg ARBSA×BV
14 eqid uR,vSu×v=uR,vSu×v
15 14 elrnmpog A×BVA×BranuR,vSu×vuRvSA×B=u×v
16 13 15 syl ARBSA×BranuR,vSu×vuRvSA×B=u×v
17 12 16 mpbird ARBSA×BranuR,vSu×v
18 17 adantl RVSWARBSA×BranuR,vSu×v
19 5 18 sseldd RVSWARBSA×BtopGenranuR,vSu×v
20 1 txval RVSWR×tS=topGenranuR,vSu×v
21 20 adantr RVSWARBSR×tS=topGenranuR,vSu×v
22 19 21 eleqtrrd RVSWARBSA×BR×tS