Metamath Proof Explorer


Theorem tz6.12i-afv2

Description: Corollary of Theorem 6.12(2) of TakeutiZaring p. 27. analogous to tz6.12i . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12i-afv2 BranFF''''A=BAFB

Proof

Step Hyp Ref Expression
1 eleq1 F''''A=yF''''AranFyranF
2 dfatafv2rnb FdefAtAF''''AranF
3 dfdfat2 FdefAtAAdomF∃!yAFy
4 3 simprbi FdefAtA∃!yAFy
5 2 4 sylbir F''''AranF∃!yAFy
6 tz6.12c-afv2 ∃!yAFyF''''A=yAFy
7 5 6 syl F''''AranFF''''A=yAFy
8 7 biimpcd F''''A=yF''''AranFAFy
9 1 8 sylbird F''''A=yyranFAFy
10 9 eqcoms y=F''''AyranFAFy
11 eleq1 y=F''''AyranFF''''AranF
12 breq2 y=F''''AAFyAFF''''A
13 10 11 12 3imtr3d y=F''''AF''''AranFAFF''''A
14 13 vtocleg F''''AranFF''''AranFAFF''''A
15 14 pm2.43i F''''AranFAFF''''A
16 15 a1i F''''A=BF''''AranFAFF''''A
17 eleq1 F''''A=BF''''AranFBranF
18 breq2 F''''A=BAFF''''AAFB
19 16 17 18 3imtr3d F''''A=BBranFAFB
20 19 com12 BranFF''''A=BAFB