Description: All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | tz6.26 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr | |
|
2 | 1 | adantr | |
3 | weso | |
|
4 | sopo | |
|
5 | 3 4 | syl | |
6 | 5 | adantr | |
7 | simpr | |
|
8 | 2 6 7 | 3jca | |
9 | frpomin2 | |
|
10 | 8 9 | sylan | |