Metamath Proof Explorer


Theorem tz6.26

Description: All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Assertion tz6.26 RWeARSeABAByBPredRBy=

Proof

Step Hyp Ref Expression
1 wefr RWeARFrA
2 1 adantr RWeARSeARFrA
3 weso RWeAROrA
4 sopo ROrARPoA
5 3 4 syl RWeARPoA
6 5 adantr RWeARSeARPoA
7 simpr RWeARSeARSeA
8 2 6 7 3jca RWeARSeARFrARPoARSeA
9 frpomin2 RFrARPoARSeABAByBPredRBy=
10 8 9 sylan RWeARSeABAByBPredRBy=