Metamath Proof Explorer


Theorem tz9.1c

Description: Alternate expression for the existence of transitive closures tz9.1 : the intersection of all transitive sets containing A is a set. (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Hypothesis tz9.1.1 AV
Assertion tz9.1c x|AxTrxV

Proof

Step Hyp Ref Expression
1 tz9.1.1 AV
2 eqid reczVzzAω=reczVzzAω
3 eqid wωreczVzzAωw=wωreczVzzAωw
4 1 2 3 trcl AwωreczVzzAωwTrwωreczVzzAωwxAxTrxwωreczVzzAωwx
5 3simpa AwωreczVzzAωwTrwωreczVzzAωwxAxTrxwωreczVzzAωwxAwωreczVzzAωwTrwωreczVzzAωw
6 omex ωV
7 fvex reczVzzAωwV
8 6 7 iunex wωreczVzzAωwV
9 sseq2 x=wωreczVzzAωwAxAwωreczVzzAωw
10 treq x=wωreczVzzAωwTrxTrwωreczVzzAωw
11 9 10 anbi12d x=wωreczVzzAωwAxTrxAwωreczVzzAωwTrwωreczVzzAωw
12 8 11 spcev AwωreczVzzAωwTrwωreczVzzAωwxAxTrx
13 4 5 12 mp2b xAxTrx
14 abn0 x|AxTrxxAxTrx
15 13 14 mpbir x|AxTrx
16 intex x|AxTrxx|AxTrxV
17 15 16 mpbi x|AxTrxV