Metamath Proof Explorer


Theorem uc1pval

Description: Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pval.p P=Poly1R
uc1pval.b B=BaseP
uc1pval.z 0˙=0P
uc1pval.d D=deg1R
uc1pval.c C=Unic1pR
uc1pval.u U=UnitR
Assertion uc1pval C=fB|f0˙coe1fDfU

Proof

Step Hyp Ref Expression
1 uc1pval.p P=Poly1R
2 uc1pval.b B=BaseP
3 uc1pval.z 0˙=0P
4 uc1pval.d D=deg1R
5 uc1pval.c C=Unic1pR
6 uc1pval.u U=UnitR
7 fveq2 r=RPoly1r=Poly1R
8 7 1 eqtr4di r=RPoly1r=P
9 8 fveq2d r=RBasePoly1r=BaseP
10 9 2 eqtr4di r=RBasePoly1r=B
11 8 fveq2d r=R0Poly1r=0P
12 11 3 eqtr4di r=R0Poly1r=0˙
13 12 neeq2d r=Rf0Poly1rf0˙
14 fveq2 r=Rdeg1r=deg1R
15 14 4 eqtr4di r=Rdeg1r=D
16 15 fveq1d r=Rdeg1rf=Df
17 16 fveq2d r=Rcoe1fdeg1rf=coe1fDf
18 fveq2 r=RUnitr=UnitR
19 18 6 eqtr4di r=RUnitr=U
20 17 19 eleq12d r=Rcoe1fdeg1rfUnitrcoe1fDfU
21 13 20 anbi12d r=Rf0Poly1rcoe1fdeg1rfUnitrf0˙coe1fDfU
22 10 21 rabeqbidv r=RfBasePoly1r|f0Poly1rcoe1fdeg1rfUnitr=fB|f0˙coe1fDfU
23 df-uc1p Unic1p=rVfBasePoly1r|f0Poly1rcoe1fdeg1rfUnitr
24 2 fvexi BV
25 24 rabex fB|f0˙coe1fDfUV
26 22 23 25 fvmpt RVUnic1pR=fB|f0˙coe1fDfU
27 fvprc ¬RVUnic1pR=
28 ssrab2 fB|f0˙coe1fDfUB
29 fvprc ¬RVPoly1R=
30 1 29 eqtrid ¬RVP=
31 30 fveq2d ¬RVBaseP=Base
32 base0 =Base
33 31 32 eqtr4di ¬RVBaseP=
34 2 33 eqtrid ¬RVB=
35 28 34 sseqtrid ¬RVfB|f0˙coe1fDfU
36 ss0 fB|f0˙coe1fDfUfB|f0˙coe1fDfU=
37 35 36 syl ¬RVfB|f0˙coe1fDfU=
38 27 37 eqtr4d ¬RVUnic1pR=fB|f0˙coe1fDfU
39 26 38 pm2.61i Unic1pR=fB|f0˙coe1fDfU
40 5 39 eqtri C=fB|f0˙coe1fDfU