Metamath Proof Explorer


Theorem uffclsflim

Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion uffclsflim FUFilXJfClusF=JfLimF

Proof

Step Hyp Ref Expression
1 ufilfil FUFilXFFilX
2 fclsfnflim FFilXxJfClusFfFilXFfxJfLimf
3 1 2 syl FUFilXxJfClusFfFilXFfxJfLimf
4 3 biimpa FUFilXxJfClusFfFilXFfxJfLimf
5 simprrr FUFilXxJfClusFfFilXFfxJfLimfxJfLimf
6 simpll FUFilXxJfClusFfFilXFfxJfLimfFUFilX
7 simprl FUFilXxJfClusFfFilXFfxJfLimffFilX
8 simprrl FUFilXxJfClusFfFilXFfxJfLimfFf
9 ufilmax FUFilXfFilXFfF=f
10 6 7 8 9 syl3anc FUFilXxJfClusFfFilXFfxJfLimfF=f
11 10 oveq2d FUFilXxJfClusFfFilXFfxJfLimfJfLimF=JfLimf
12 5 11 eleqtrrd FUFilXxJfClusFfFilXFfxJfLimfxJfLimF
13 4 12 rexlimddv FUFilXxJfClusFxJfLimF
14 13 ex FUFilXxJfClusFxJfLimF
15 14 ssrdv FUFilXJfClusFJfLimF
16 flimfcls JfLimFJfClusF
17 16 a1i FUFilXJfLimFJfClusF
18 15 17 eqssd FUFilXJfClusF=JfLimF