Metamath Proof Explorer


Theorem uhgr0e

Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses uhgr0e.g φGW
uhgr0e.e φiEdgG=
Assertion uhgr0e φGUHGraph

Proof

Step Hyp Ref Expression
1 uhgr0e.g φGW
2 uhgr0e.e φiEdgG=
3 f0 :𝒫VtxG
4 dm0 dom=
5 4 feq2i :dom𝒫VtxG:𝒫VtxG
6 3 5 mpbir :dom𝒫VtxG
7 eqid VtxG=VtxG
8 eqid iEdgG=iEdgG
9 7 8 isuhgr GWGUHGraphiEdgG:domiEdgG𝒫VtxG
10 1 9 syl φGUHGraphiEdgG:domiEdgG𝒫VtxG
11 id iEdgG=iEdgG=
12 dmeq iEdgG=domiEdgG=dom
13 11 12 feq12d iEdgG=iEdgG:domiEdgG𝒫VtxG:dom𝒫VtxG
14 2 13 syl φiEdgG:domiEdgG𝒫VtxG:dom𝒫VtxG
15 10 14 bitrd φGUHGraph:dom𝒫VtxG
16 6 15 mpbiri φGUHGraph