Metamath Proof Explorer


Theorem uhgr0vb

Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 9-Oct-2020)

Ref Expression
Assertion uhgr0vb GWVtxG=GUHGraphiEdgG=

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 uhgrf GUHGraphiEdgG:domiEdgG𝒫VtxG
4 pweq VtxG=𝒫VtxG=𝒫
5 4 difeq1d VtxG=𝒫VtxG=𝒫
6 pw0 𝒫=
7 6 difeq1i 𝒫=
8 difid =
9 7 8 eqtri 𝒫=
10 5 9 eqtrdi VtxG=𝒫VtxG=
11 10 adantl GWVtxG=𝒫VtxG=
12 11 feq3d GWVtxG=iEdgG:domiEdgG𝒫VtxGiEdgG:domiEdgG
13 f00 iEdgG:domiEdgGiEdgG=domiEdgG=
14 13 simplbi iEdgG:domiEdgGiEdgG=
15 12 14 syl6bi GWVtxG=iEdgG:domiEdgG𝒫VtxGiEdgG=
16 3 15 syl5 GWVtxG=GUHGraphiEdgG=
17 simpl GWiEdgG=GW
18 simpr GWiEdgG=iEdgG=
19 17 18 uhgr0e GWiEdgG=GUHGraph
20 19 ex GWiEdgG=GUHGraph
21 20 adantr GWVtxG=iEdgG=GUHGraph
22 16 21 impbid GWVtxG=GUHGraphiEdgG=