Metamath Proof Explorer


Theorem uhgr0vb

Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 9-Oct-2020)

Ref Expression
Assertion uhgr0vb G W Vtx G = G UHGraph iEdg G =

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 uhgrf G UHGraph iEdg G : dom iEdg G 𝒫 Vtx G
4 pweq Vtx G = 𝒫 Vtx G = 𝒫
5 4 difeq1d Vtx G = 𝒫 Vtx G = 𝒫
6 pw0 𝒫 =
7 6 difeq1i 𝒫 =
8 difid =
9 7 8 eqtri 𝒫 =
10 5 9 eqtrdi Vtx G = 𝒫 Vtx G =
11 10 adantl G W Vtx G = 𝒫 Vtx G =
12 11 feq3d G W Vtx G = iEdg G : dom iEdg G 𝒫 Vtx G iEdg G : dom iEdg G
13 f00 iEdg G : dom iEdg G iEdg G = dom iEdg G =
14 13 simplbi iEdg G : dom iEdg G iEdg G =
15 12 14 syl6bi G W Vtx G = iEdg G : dom iEdg G 𝒫 Vtx G iEdg G =
16 3 15 syl5 G W Vtx G = G UHGraph iEdg G =
17 simpl G W iEdg G = G W
18 simpr G W iEdg G = iEdg G =
19 17 18 uhgr0e G W iEdg G = G UHGraph
20 19 ex G W iEdg G = G UHGraph
21 20 adantr G W Vtx G = iEdg G = G UHGraph
22 16 21 impbid G W Vtx G = G UHGraph iEdg G =