Metamath Proof Explorer


Theorem uhgrspanop

Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020)

Ref Expression
Hypotheses uhgrspanop.v V=VtxG
uhgrspanop.e E=iEdgG
Assertion uhgrspanop GUHGraphVEAUHGraph

Proof

Step Hyp Ref Expression
1 uhgrspanop.v V=VtxG
2 uhgrspanop.e E=iEdgG
3 opex VEAV
4 3 a1i GUHGraphVEAV
5 1 fvexi VV
6 2 fvexi EV
7 6 resex EAV
8 5 7 opvtxfvi VtxVEA=V
9 8 a1i GUHGraphVtxVEA=V
10 5 7 opiedgfvi iEdgVEA=EA
11 10 a1i GUHGraphiEdgVEA=EA
12 id GUHGraphGUHGraph
13 1 2 4 9 11 12 uhgrspan GUHGraphVEAUHGraph