Metamath Proof Explorer


Theorem ulmf2

Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Assertion ulmf2 FFnZFuSGF:ZS

Proof

Step Hyp Ref Expression
1 ulmpm FuSGFS𝑝𝑚
2 ovex SV
3 zex V
4 2 3 elpm2 FS𝑝𝑚F:domFSdomF
5 4 simplbi FS𝑝𝑚F:domFS
6 1 5 syl FuSGF:domFS
7 6 adantl FFnZFuSGF:domFS
8 fndm FFnZdomF=Z
9 8 adantr FFnZFuSGdomF=Z
10 9 feq2d FFnZFuSGF:domFSF:ZS
11 7 10 mpbid FFnZFuSGF:ZS