Metamath Proof Explorer


Theorem ulmuni

Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017)

Ref Expression
Assertion ulmuni F u S G F u S H G = H

Proof

Step Hyp Ref Expression
1 ulmcl F u S G G : S
2 1 adantr F u S G F u S H G : S
3 2 ffnd F u S G F u S H G Fn S
4 ulmcl F u S H H : S
5 4 adantl F u S G F u S H H : S
6 5 ffnd F u S G F u S H H Fn S
7 eqid n = n
8 simplr F u S G F u S H x S n F : n S n
9 simpr F u S G F u S H x S n F : n S F : n S
10 simpllr F u S G F u S H x S n F : n S x S
11 fvex n V
12 11 mptex i n F i x V
13 12 a1i F u S G F u S H x S n F : n S i n F i x V
14 fveq2 i = k F i = F k
15 14 fveq1d i = k F i x = F k x
16 eqid i n F i x = i n F i x
17 fvex F k x V
18 15 16 17 fvmpt k n i n F i x k = F k x
19 18 eqcomd k n F k x = i n F i x k
20 19 adantl F u S G F u S H x S n F : n S k n F k x = i n F i x k
21 simp-4l F u S G F u S H x S n F : n S F u S G
22 7 8 9 10 13 20 21 ulmclm F u S G F u S H x S n F : n S i n F i x G x
23 simp-4r F u S G F u S H x S n F : n S F u S H
24 7 8 9 10 13 20 23 ulmclm F u S G F u S H x S n F : n S i n F i x H x
25 climuni i n F i x G x i n F i x H x G x = H x
26 22 24 25 syl2anc F u S G F u S H x S n F : n S G x = H x
27 ulmf F u S G n F : n S
28 27 ad2antrr F u S G F u S H x S n F : n S
29 26 28 r19.29a F u S G F u S H x S G x = H x
30 3 6 29 eqfnfvd F u S G F u S H G = H