Description: If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017) (Revised by AV, 12-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgr3cyclex.v | |
|
uhgr3cyclex.e | |
||
Assertion | umgr3v3e3cycl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgr3cyclex.v | |
|
2 | uhgr3cyclex.e | |
|
3 | umgrupgr | |
|
4 | 3 | adantr | |
5 | simpl | |
|
6 | 5 | adantl | |
7 | simpr | |
|
8 | 7 | adantl | |
9 | 2 1 | upgr3v3e3cycl | |
10 | simpl | |
|
11 | 10 | reximi | |
12 | 11 | reximi | |
13 | 12 | reximi | |
14 | 9 13 | syl | |
15 | 4 6 8 14 | syl3anc | |
16 | 15 | ex | |
17 | 16 | exlimdvv | |
18 | simplll | |
|
19 | df-3an | |
|
20 | 19 | biimpri | |
21 | 20 | ad4ant23 | |
22 | simpr | |
|
23 | 1 2 | umgr3cyclex | |
24 | 3simpa | |
|
25 | 24 | 2eximi | |
26 | 23 25 | syl | |
27 | 18 21 22 26 | syl3anc | |
28 | 27 | rexlimdva2 | |
29 | 28 | rexlimdvva | |
30 | 17 29 | impbid | |