Metamath Proof Explorer


Theorem umgr3v3e3cycl

Description: If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017) (Revised by AV, 12-Feb-2021)

Ref Expression
Hypotheses uhgr3cyclex.v V=VtxG
uhgr3cyclex.e E=EdgG
Assertion umgr3v3e3cycl GUMGraphfpfCyclesGpf=3aVbVcVabEbcEcaE

Proof

Step Hyp Ref Expression
1 uhgr3cyclex.v V=VtxG
2 uhgr3cyclex.e E=EdgG
3 umgrupgr GUMGraphGUPGraph
4 3 adantr GUMGraphfCyclesGpf=3GUPGraph
5 simpl fCyclesGpf=3fCyclesGp
6 5 adantl GUMGraphfCyclesGpf=3fCyclesGp
7 simpr fCyclesGpf=3f=3
8 7 adantl GUMGraphfCyclesGpf=3f=3
9 2 1 upgr3v3e3cycl GUPGraphfCyclesGpf=3aVbVcVabEbcEcaEabbcca
10 simpl abEbcEcaEabbccaabEbcEcaE
11 10 reximi cVabEbcEcaEabbccacVabEbcEcaE
12 11 reximi bVcVabEbcEcaEabbccabVcVabEbcEcaE
13 12 reximi aVbVcVabEbcEcaEabbccaaVbVcVabEbcEcaE
14 9 13 syl GUPGraphfCyclesGpf=3aVbVcVabEbcEcaE
15 4 6 8 14 syl3anc GUMGraphfCyclesGpf=3aVbVcVabEbcEcaE
16 15 ex GUMGraphfCyclesGpf=3aVbVcVabEbcEcaE
17 16 exlimdvv GUMGraphfpfCyclesGpf=3aVbVcVabEbcEcaE
18 simplll GUMGraphaVbVcVabEbcEcaEGUMGraph
19 df-3an aVbVcVaVbVcV
20 19 biimpri aVbVcVaVbVcV
21 20 ad4ant23 GUMGraphaVbVcVabEbcEcaEaVbVcV
22 simpr GUMGraphaVbVcVabEbcEcaEabEbcEcaE
23 1 2 umgr3cyclex GUMGraphaVbVcVabEbcEcaEfpfCyclesGpf=3p0=a
24 3simpa fCyclesGpf=3p0=afCyclesGpf=3
25 24 2eximi fpfCyclesGpf=3p0=afpfCyclesGpf=3
26 23 25 syl GUMGraphaVbVcVabEbcEcaEfpfCyclesGpf=3
27 18 21 22 26 syl3anc GUMGraphaVbVcVabEbcEcaEfpfCyclesGpf=3
28 27 rexlimdva2 GUMGraphaVbVcVabEbcEcaEfpfCyclesGpf=3
29 28 rexlimdvva GUMGraphaVbVcVabEbcEcaEfpfCyclesGpf=3
30 17 29 impbid GUMGraphfpfCyclesGpf=3aVbVcVabEbcEcaE