Metamath Proof Explorer


Theorem umgredgprv

Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either M or N could be proper classes ( ( EX ) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypotheses umgrnloopv.e E=iEdgG
umgredgprv.v V=VtxG
Assertion umgredgprv GUMGraphXdomEEX=MNMVNV

Proof

Step Hyp Ref Expression
1 umgrnloopv.e E=iEdgG
2 umgredgprv.v V=VtxG
3 umgruhgr GUMGraphGUHGraph
4 2 1 uhgrss GUHGraphXdomEEXV
5 3 4 sylan GUMGraphXdomEEXV
6 2 1 umgredg2 GUMGraphXdomEEX=2
7 sseq1 EX=MNEXVMNV
8 fveqeq2 EX=MNEX=2MN=2
9 7 8 anbi12d EX=MNEXVEX=2MNVMN=2
10 eqid MN=MN
11 10 hashprdifel MN=2MMNNMNMN
12 prssg MMNNMNMVNVMNV
13 12 3adant3 MMNNMNMNMVNVMNV
14 13 biimprd MMNNMNMNMNVMVNV
15 11 14 syl MN=2MNVMVNV
16 15 impcom MNVMN=2MVNV
17 9 16 syl6bi EX=MNEXVEX=2MVNV
18 17 com12 EXVEX=2EX=MNMVNV
19 5 6 18 syl2anc GUMGraphXdomEEX=MNMVNV