Metamath Proof Explorer


Theorem umgrnloop0

Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e E=iEdgG
Assertion umgrnloop0 GUMGraphxdomE|Ex=U=

Proof

Step Hyp Ref Expression
1 umgrnloopv.e E=iEdgG
2 neirr ¬UU
3 1 umgrnloop GUMGraphxdomEEx=UUUU
4 2 3 mtoi GUMGraph¬xdomEEx=UU
5 simpr GUMGraphEx=UEx=U
6 dfsn2 U=UU
7 5 6 eqtrdi GUMGraphEx=UEx=UU
8 7 ex GUMGraphEx=UEx=UU
9 8 reximdv GUMGraphxdomEEx=UxdomEEx=UU
10 4 9 mtod GUMGraph¬xdomEEx=U
11 ralnex xdomE¬Ex=U¬xdomEEx=U
12 10 11 sylibr GUMGraphxdomE¬Ex=U
13 rabeq0 xdomE|Ex=U=xdomE¬Ex=U
14 12 13 sylibr GUMGraphxdomE|Ex=U=