Metamath Proof Explorer


Theorem umgrnloopv

Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e E = iEdg G
Assertion umgrnloopv G UMGraph M W E X = M N M N

Proof

Step Hyp Ref Expression
1 umgrnloopv.e E = iEdg G
2 prnzg M W M N
3 2 adantl E X = M N M W M N
4 neeq1 E X = M N E X M N
5 4 adantr E X = M N M W E X M N
6 3 5 mpbird E X = M N M W E X
7 fvfundmfvn0 E X X dom E Fun E X
8 6 7 syl E X = M N M W X dom E Fun E X
9 eqid Vtx G = Vtx G
10 9 1 umgredg2 G UMGraph X dom E E X = 2
11 fveqeq2 E X = M N E X = 2 M N = 2
12 eqid M N = M N
13 12 hashprdifel M N = 2 M M N N M N M N
14 13 simp3d M N = 2 M N
15 11 14 syl6bi E X = M N E X = 2 M N
16 15 adantr E X = M N M W E X = 2 M N
17 10 16 syl5com G UMGraph X dom E E X = M N M W M N
18 17 expcom X dom E G UMGraph E X = M N M W M N
19 18 com23 X dom E E X = M N M W G UMGraph M N
20 19 adantr X dom E Fun E X E X = M N M W G UMGraph M N
21 8 20 mpcom E X = M N M W G UMGraph M N
22 21 ex E X = M N M W G UMGraph M N
23 22 com13 G UMGraph M W E X = M N M N
24 23 imp G UMGraph M W E X = M N M N