Metamath Proof Explorer


Theorem umgrnloopv

Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e E=iEdgG
Assertion umgrnloopv GUMGraphMWEX=MNMN

Proof

Step Hyp Ref Expression
1 umgrnloopv.e E=iEdgG
2 prnzg MWMN
3 2 adantl EX=MNMWMN
4 neeq1 EX=MNEXMN
5 4 adantr EX=MNMWEXMN
6 3 5 mpbird EX=MNMWEX
7 fvfundmfvn0 EXXdomEFunEX
8 6 7 syl EX=MNMWXdomEFunEX
9 eqid VtxG=VtxG
10 9 1 umgredg2 GUMGraphXdomEEX=2
11 fveqeq2 EX=MNEX=2MN=2
12 eqid MN=MN
13 12 hashprdifel MN=2MMNNMNMN
14 13 simp3d MN=2MN
15 11 14 syl6bi EX=MNEX=2MN
16 15 adantr EX=MNMWEX=2MN
17 10 16 syl5com GUMGraphXdomEEX=MNMWMN
18 17 expcom XdomEGUMGraphEX=MNMWMN
19 18 com23 XdomEEX=MNMWGUMGraphMN
20 19 adantr XdomEFunEXEX=MNMWGUMGraphMN
21 8 20 mpcom EX=MNMWGUMGraphMN
22 21 ex EX=MNMWGUMGraphMN
23 22 com13 GUMGraphMWEX=MNMN
24 23 imp GUMGraphMWEX=MNMN