Metamath Proof Explorer


Theorem unctb

Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006) (Proof shortened by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion unctb AωBωABω

Proof

Step Hyp Ref Expression
1 ctex AωAV
2 ctex BωBV
3 undjudom AVBVABA⊔︀B
4 1 2 3 syl2an AωBωABA⊔︀B
5 djudom1 AωBVA⊔︀Bω⊔︀B
6 2 5 sylan2 AωBωA⊔︀Bω⊔︀B
7 simpr AωBωBω
8 omex ωV
9 djudom2 BωωVω⊔︀Bω⊔︀ω
10 7 8 9 sylancl AωBωω⊔︀Bω⊔︀ω
11 domtr A⊔︀Bω⊔︀Bω⊔︀Bω⊔︀ωA⊔︀Bω⊔︀ω
12 6 10 11 syl2anc AωBωA⊔︀Bω⊔︀ω
13 8 8 xpex ω×ωV
14 xp2dju 2𝑜×ω=ω⊔︀ω
15 ordom Ordω
16 2onn 2𝑜ω
17 ordelss Ordω2𝑜ω2𝑜ω
18 15 16 17 mp2an 2𝑜ω
19 xpss1 2𝑜ω2𝑜×ωω×ω
20 18 19 ax-mp 2𝑜×ωω×ω
21 14 20 eqsstrri ω⊔︀ωω×ω
22 ssdomg ω×ωVω⊔︀ωω×ωω⊔︀ωω×ω
23 13 21 22 mp2 ω⊔︀ωω×ω
24 xpomen ω×ωω
25 domentr ω⊔︀ωω×ωω×ωωω⊔︀ωω
26 23 24 25 mp2an ω⊔︀ωω
27 domtr A⊔︀Bω⊔︀ωω⊔︀ωωA⊔︀Bω
28 12 26 27 sylancl AωBωA⊔︀Bω
29 domtr ABA⊔︀BA⊔︀BωABω
30 4 28 29 syl2anc AωBωABω