Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006) (Proof shortened by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | unctb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex | |
|
2 | ctex | |
|
3 | undjudom | |
|
4 | 1 2 3 | syl2an | |
5 | djudom1 | |
|
6 | 2 5 | sylan2 | |
7 | simpr | |
|
8 | omex | |
|
9 | djudom2 | |
|
10 | 7 8 9 | sylancl | |
11 | domtr | |
|
12 | 6 10 11 | syl2anc | |
13 | 8 8 | xpex | |
14 | xp2dju | |
|
15 | ordom | |
|
16 | 2onn | |
|
17 | ordelss | |
|
18 | 15 16 17 | mp2an | |
19 | xpss1 | |
|
20 | 18 19 | ax-mp | |
21 | 14 20 | eqsstrri | |
22 | ssdomg | |
|
23 | 13 21 22 | mp2 | |
24 | xpomen | |
|
25 | domentr | |
|
26 | 23 24 25 | mp2an | |
27 | domtr | |
|
28 | 12 26 27 | sylancl | |
29 | domtr | |
|
30 | 4 28 29 | syl2anc | |