Metamath Proof Explorer


Theorem undmrnresiss

Description: Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg . (Contributed by RP, 26-Sep-2020)

Ref Expression
Assertion undmrnresiss IdomAranABxyxAyxBxyBy

Proof

Step Hyp Ref Expression
1 resundi IdomAranA=IdomAIranA
2 1 sseq1i IdomAranABIdomAIranAB
3 unss IdomABIranABIdomAIranAB
4 relres RelIdomA
5 ssrel RelIdomAIdomABxzxzIdomAxzB
6 4 5 ax-mp IdomABxzxzIdomAxzB
7 vex xV
8 7 eldm xdomAyxAy
9 df-br xIzxzI
10 vex zV
11 10 ideq xIzx=z
12 9 11 bitr3i xzIx=z
13 8 12 anbi12ci xdomAxzIx=zyxAy
14 10 opelresi xzIdomAxdomAxzI
15 19.42v yx=zxAyx=zyxAy
16 13 14 15 3bitr4i xzIdomAyx=zxAy
17 df-br xBzxzB
18 17 bicomi xzBxBz
19 16 18 imbi12i xzIdomAxzByx=zxAyxBz
20 19 2albii xzxzIdomAxzBxzyx=zxAyxBz
21 19.23v yx=zxAyxBzyx=zxAyxBz
22 21 bicomi yx=zxAyxBzyx=zxAyxBz
23 22 2albii xzyx=zxAyxBzxzyx=zxAyxBz
24 alcom zyx=zxAyxBzyzx=zxAyxBz
25 ancomst x=zxAyxBzxAyx=zxBz
26 impexp xAyx=zxBzxAyx=zxBz
27 25 26 bitri x=zxAyxBzxAyx=zxBz
28 27 albii zx=zxAyxBzzxAyx=zxBz
29 19.21v zxAyx=zxBzxAyzx=zxBz
30 equcom x=zz=x
31 30 imbi1i x=zxBzz=xxBz
32 31 albii zx=zxBzzz=xxBz
33 breq2 z=xxBzxBx
34 33 equsalvw zz=xxBzxBx
35 32 34 bitri zx=zxBzxBx
36 35 imbi2i xAyzx=zxBzxAyxBx
37 28 29 36 3bitri zx=zxAyxBzxAyxBx
38 37 albii yzx=zxAyxBzyxAyxBx
39 24 38 bitri zyx=zxAyxBzyxAyxBx
40 39 albii xzyx=zxAyxBzxyxAyxBx
41 23 40 bitri xzyx=zxAyxBzxyxAyxBx
42 6 20 41 3bitri IdomABxyxAyxBx
43 relres RelIranA
44 ssrel RelIranAIranAByzyzIranAyzB
45 43 44 ax-mp IranAByzyzIranAyzB
46 vex yV
47 46 elrn yranAxxAy
48 df-br yIzyzI
49 10 ideq yIzy=z
50 48 49 bitr3i yzIy=z
51 47 50 anbi12ci yranAyzIy=zxxAy
52 10 opelresi yzIranAyranAyzI
53 19.42v xy=zxAyy=zxxAy
54 51 52 53 3bitr4i yzIranAxy=zxAy
55 df-br yBzyzB
56 55 bicomi yzByBz
57 54 56 imbi12i yzIranAyzBxy=zxAyyBz
58 57 2albii yzyzIranAyzByzxy=zxAyyBz
59 19.23v xy=zxAyyBzxy=zxAyyBz
60 59 bicomi xy=zxAyyBzxy=zxAyyBz
61 60 2albii yzxy=zxAyyBzyzxy=zxAyyBz
62 alrot3 xyzy=zxAyyBzyzxy=zxAyyBz
63 ancomst y=zxAyyBzxAyy=zyBz
64 impexp xAyy=zyBzxAyy=zyBz
65 63 64 bitri y=zxAyyBzxAyy=zyBz
66 65 albii zy=zxAyyBzzxAyy=zyBz
67 19.21v zxAyy=zyBzxAyzy=zyBz
68 equcom y=zz=y
69 68 imbi1i y=zyBzz=yyBz
70 69 albii zy=zyBzzz=yyBz
71 breq2 z=yyBzyBy
72 71 equsalvw zz=yyBzyBy
73 70 72 bitri zy=zyBzyBy
74 73 imbi2i xAyzy=zyBzxAyyBy
75 66 67 74 3bitri zy=zxAyyBzxAyyBy
76 75 2albii xyzy=zxAyyBzxyxAyyBy
77 61 62 76 3bitr2i yzxy=zxAyyBzxyxAyyBy
78 45 58 77 3bitri IranABxyxAyyBy
79 42 78 anbi12i IdomABIranABxyxAyxBxxyxAyyBy
80 19.26-2 xyxAyxBxxAyyByxyxAyxBxxyxAyyBy
81 pm4.76 xAyxBxxAyyByxAyxBxyBy
82 81 2albii xyxAyxBxxAyyByxyxAyxBxyBy
83 79 80 82 3bitr2i IdomABIranABxyxAyxBxyBy
84 2 3 83 3bitr2i IdomAranABxyxAyxBxyBy