Step |
Hyp |
Ref |
Expression |
1 |
|
resundi |
|
2 |
1
|
sseq1i |
|
3 |
|
unss |
|
4 |
|
relres |
|
5 |
|
ssrel |
|
6 |
4 5
|
ax-mp |
|
7 |
|
vex |
|
8 |
7
|
eldm |
|
9 |
|
df-br |
|
10 |
|
vex |
|
11 |
10
|
ideq |
|
12 |
9 11
|
bitr3i |
|
13 |
8 12
|
anbi12ci |
|
14 |
10
|
opelresi |
|
15 |
|
19.42v |
|
16 |
13 14 15
|
3bitr4i |
|
17 |
|
df-br |
|
18 |
17
|
bicomi |
|
19 |
16 18
|
imbi12i |
|
20 |
19
|
2albii |
|
21 |
|
19.23v |
|
22 |
21
|
bicomi |
|
23 |
22
|
2albii |
|
24 |
|
alcom |
|
25 |
|
ancomst |
|
26 |
|
impexp |
|
27 |
25 26
|
bitri |
|
28 |
27
|
albii |
|
29 |
|
19.21v |
|
30 |
|
equcom |
|
31 |
30
|
imbi1i |
|
32 |
31
|
albii |
|
33 |
|
breq2 |
|
34 |
33
|
equsalvw |
|
35 |
32 34
|
bitri |
|
36 |
35
|
imbi2i |
|
37 |
28 29 36
|
3bitri |
|
38 |
37
|
albii |
|
39 |
24 38
|
bitri |
|
40 |
39
|
albii |
|
41 |
23 40
|
bitri |
|
42 |
6 20 41
|
3bitri |
|
43 |
|
relres |
|
44 |
|
ssrel |
|
45 |
43 44
|
ax-mp |
|
46 |
|
vex |
|
47 |
46
|
elrn |
|
48 |
|
df-br |
|
49 |
10
|
ideq |
|
50 |
48 49
|
bitr3i |
|
51 |
47 50
|
anbi12ci |
|
52 |
10
|
opelresi |
|
53 |
|
19.42v |
|
54 |
51 52 53
|
3bitr4i |
|
55 |
|
df-br |
|
56 |
55
|
bicomi |
|
57 |
54 56
|
imbi12i |
|
58 |
57
|
2albii |
|
59 |
|
19.23v |
|
60 |
59
|
bicomi |
|
61 |
60
|
2albii |
|
62 |
|
alrot3 |
|
63 |
|
ancomst |
|
64 |
|
impexp |
|
65 |
63 64
|
bitri |
|
66 |
65
|
albii |
|
67 |
|
19.21v |
|
68 |
|
equcom |
|
69 |
68
|
imbi1i |
|
70 |
69
|
albii |
|
71 |
|
breq2 |
|
72 |
71
|
equsalvw |
|
73 |
70 72
|
bitri |
|
74 |
73
|
imbi2i |
|
75 |
66 67 74
|
3bitri |
|
76 |
75
|
2albii |
|
77 |
61 62 76
|
3bitr2i |
|
78 |
45 58 77
|
3bitri |
|
79 |
42 78
|
anbi12i |
|
80 |
|
19.26-2 |
|
81 |
|
pm4.76 |
|
82 |
81
|
2albii |
|
83 |
79 80 82
|
3bitr2i |
|
84 |
2 3 83
|
3bitr2i |
|