| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resundi | ⊢ (  I   ↾  ( dom  𝐴  ∪  ran  𝐴 ) )  =  ( (  I   ↾  dom  𝐴 )  ∪  (  I   ↾  ran  𝐴 ) ) | 
						
							| 2 | 1 | sseq1i | ⊢ ( (  I   ↾  ( dom  𝐴  ∪  ran  𝐴 ) )  ⊆  𝐵  ↔  ( (  I   ↾  dom  𝐴 )  ∪  (  I   ↾  ran  𝐴 ) )  ⊆  𝐵 ) | 
						
							| 3 |  | unss | ⊢ ( ( (  I   ↾  dom  𝐴 )  ⊆  𝐵  ∧  (  I   ↾  ran  𝐴 )  ⊆  𝐵 )  ↔  ( (  I   ↾  dom  𝐴 )  ∪  (  I   ↾  ran  𝐴 ) )  ⊆  𝐵 ) | 
						
							| 4 |  | relres | ⊢ Rel  (  I   ↾  dom  𝐴 ) | 
						
							| 5 |  | ssrel | ⊢ ( Rel  (  I   ↾  dom  𝐴 )  →  ( (  I   ↾  dom  𝐴 )  ⊆  𝐵  ↔  ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  (  I   ↾  dom  𝐴 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐵 ) ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( (  I   ↾  dom  𝐴 )  ⊆  𝐵  ↔  ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  (  I   ↾  dom  𝐴 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐵 ) ) | 
						
							| 7 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 8 | 7 | eldm | ⊢ ( 𝑥  ∈  dom  𝐴  ↔  ∃ 𝑦 𝑥 𝐴 𝑦 ) | 
						
							| 9 |  | df-br | ⊢ ( 𝑥  I  𝑧  ↔  〈 𝑥 ,  𝑧 〉  ∈   I  ) | 
						
							| 10 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 11 | 10 | ideq | ⊢ ( 𝑥  I  𝑧  ↔  𝑥  =  𝑧 ) | 
						
							| 12 | 9 11 | bitr3i | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈   I   ↔  𝑥  =  𝑧 ) | 
						
							| 13 | 8 12 | anbi12ci | ⊢ ( ( 𝑥  ∈  dom  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈   I  )  ↔  ( 𝑥  =  𝑧  ∧  ∃ 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 14 | 10 | opelresi | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  (  I   ↾  dom  𝐴 )  ↔  ( 𝑥  ∈  dom  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈   I  ) ) | 
						
							| 15 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  ↔  ( 𝑥  =  𝑧  ∧  ∃ 𝑦 𝑥 𝐴 𝑦 ) ) | 
						
							| 16 | 13 14 15 | 3bitr4i | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  (  I   ↾  dom  𝐴 )  ↔  ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 ) ) | 
						
							| 17 |  | df-br | ⊢ ( 𝑥 𝐵 𝑧  ↔  〈 𝑥 ,  𝑧 〉  ∈  𝐵 ) | 
						
							| 18 | 17 | bicomi | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  𝐵  ↔  𝑥 𝐵 𝑧 ) | 
						
							| 19 | 16 18 | imbi12i | ⊢ ( ( 〈 𝑥 ,  𝑧 〉  ∈  (  I   ↾  dom  𝐴 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐵 )  ↔  ( ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 20 | 19 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 ,  𝑧 〉  ∈  (  I   ↾  dom  𝐴 )  →  〈 𝑥 ,  𝑧 〉  ∈  𝐵 )  ↔  ∀ 𝑥 ∀ 𝑧 ( ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 21 |  | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ( ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 22 | 21 | bicomi | ⊢ ( ( ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 23 | 22 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 24 |  | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 25 |  | ancomst | ⊢ ( ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ( ( 𝑥 𝐴 𝑦  ∧  𝑥  =  𝑧 )  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 26 |  | impexp | ⊢ ( ( ( 𝑥 𝐴 𝑦  ∧  𝑥  =  𝑧 )  →  𝑥 𝐵 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  →  ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 ) ) ) | 
						
							| 27 | 25 26 | bitri | ⊢ ( ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  →  ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 ) ) ) | 
						
							| 28 | 27 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 ) ) ) | 
						
							| 29 |  | 19.21v | ⊢ ( ∀ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 ) )  ↔  ( 𝑥 𝐴 𝑦  →  ∀ 𝑧 ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 ) ) ) | 
						
							| 30 |  | equcom | ⊢ ( 𝑥  =  𝑧  ↔  𝑧  =  𝑥 ) | 
						
							| 31 | 30 | imbi1i | ⊢ ( ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 )  ↔  ( 𝑧  =  𝑥  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 32 | 31 | albii | ⊢ ( ∀ 𝑧 ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑧 ( 𝑧  =  𝑥  →  𝑥 𝐵 𝑧 ) ) | 
						
							| 33 |  | breq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑥 𝐵 𝑧  ↔  𝑥 𝐵 𝑥 ) ) | 
						
							| 34 | 33 | equsalvw | ⊢ ( ∀ 𝑧 ( 𝑧  =  𝑥  →  𝑥 𝐵 𝑧 )  ↔  𝑥 𝐵 𝑥 ) | 
						
							| 35 | 32 34 | bitri | ⊢ ( ∀ 𝑧 ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 )  ↔  𝑥 𝐵 𝑥 ) | 
						
							| 36 | 35 | imbi2i | ⊢ ( ( 𝑥 𝐴 𝑦  →  ∀ 𝑧 ( 𝑥  =  𝑧  →  𝑥 𝐵 𝑧 ) )  ↔  ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 ) ) | 
						
							| 37 | 28 29 36 | 3bitri | ⊢ ( ∀ 𝑧 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 ) ) | 
						
							| 38 | 37 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 ) ) | 
						
							| 39 | 24 38 | bitri | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 ) ) | 
						
							| 40 | 39 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 ) ) | 
						
							| 41 | 23 40 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( ∃ 𝑦 ( 𝑥  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑥 𝐵 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 ) ) | 
						
							| 42 | 6 20 41 | 3bitri | ⊢ ( (  I   ↾  dom  𝐴 )  ⊆  𝐵  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 ) ) | 
						
							| 43 |  | relres | ⊢ Rel  (  I   ↾  ran  𝐴 ) | 
						
							| 44 |  | ssrel | ⊢ ( Rel  (  I   ↾  ran  𝐴 )  →  ( (  I   ↾  ran  𝐴 )  ⊆  𝐵  ↔  ∀ 𝑦 ∀ 𝑧 ( 〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  ran  𝐴 )  →  〈 𝑦 ,  𝑧 〉  ∈  𝐵 ) ) ) | 
						
							| 45 | 43 44 | ax-mp | ⊢ ( (  I   ↾  ran  𝐴 )  ⊆  𝐵  ↔  ∀ 𝑦 ∀ 𝑧 ( 〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  ran  𝐴 )  →  〈 𝑦 ,  𝑧 〉  ∈  𝐵 ) ) | 
						
							| 46 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 47 | 46 | elrn | ⊢ ( 𝑦  ∈  ran  𝐴  ↔  ∃ 𝑥 𝑥 𝐴 𝑦 ) | 
						
							| 48 |  | df-br | ⊢ ( 𝑦  I  𝑧  ↔  〈 𝑦 ,  𝑧 〉  ∈   I  ) | 
						
							| 49 | 10 | ideq | ⊢ ( 𝑦  I  𝑧  ↔  𝑦  =  𝑧 ) | 
						
							| 50 | 48 49 | bitr3i | ⊢ ( 〈 𝑦 ,  𝑧 〉  ∈   I   ↔  𝑦  =  𝑧 ) | 
						
							| 51 | 47 50 | anbi12ci | ⊢ ( ( 𝑦  ∈  ran  𝐴  ∧  〈 𝑦 ,  𝑧 〉  ∈   I  )  ↔  ( 𝑦  =  𝑧  ∧  ∃ 𝑥 𝑥 𝐴 𝑦 ) ) | 
						
							| 52 | 10 | opelresi | ⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  ran  𝐴 )  ↔  ( 𝑦  ∈  ran  𝐴  ∧  〈 𝑦 ,  𝑧 〉  ∈   I  ) ) | 
						
							| 53 |  | 19.42v | ⊢ ( ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  ↔  ( 𝑦  =  𝑧  ∧  ∃ 𝑥 𝑥 𝐴 𝑦 ) ) | 
						
							| 54 | 51 52 53 | 3bitr4i | ⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  ran  𝐴 )  ↔  ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 ) ) | 
						
							| 55 |  | df-br | ⊢ ( 𝑦 𝐵 𝑧  ↔  〈 𝑦 ,  𝑧 〉  ∈  𝐵 ) | 
						
							| 56 | 55 | bicomi | ⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  𝐵  ↔  𝑦 𝐵 𝑧 ) | 
						
							| 57 | 54 56 | imbi12i | ⊢ ( ( 〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  ran  𝐴 )  →  〈 𝑦 ,  𝑧 〉  ∈  𝐵 )  ↔  ( ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 58 | 57 | 2albii | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( 〈 𝑦 ,  𝑧 〉  ∈  (  I   ↾  ran  𝐴 )  →  〈 𝑦 ,  𝑧 〉  ∈  𝐵 )  ↔  ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 59 |  | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ( ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 60 | 59 | bicomi | ⊢ ( ( ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ∀ 𝑥 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 61 | 60 | 2albii | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 62 |  | alrot3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 63 |  | ancomst | ⊢ ( ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ( ( 𝑥 𝐴 𝑦  ∧  𝑦  =  𝑧 )  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 64 |  | impexp | ⊢ ( ( ( 𝑥 𝐴 𝑦  ∧  𝑦  =  𝑧 )  →  𝑦 𝐵 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  →  ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 ) ) ) | 
						
							| 65 | 63 64 | bitri | ⊢ ( ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  →  ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 ) ) ) | 
						
							| 66 | 65 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ∀ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 ) ) ) | 
						
							| 67 |  | 19.21v | ⊢ ( ∀ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 ) )  ↔  ( 𝑥 𝐴 𝑦  →  ∀ 𝑧 ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 ) ) ) | 
						
							| 68 |  | equcom | ⊢ ( 𝑦  =  𝑧  ↔  𝑧  =  𝑦 ) | 
						
							| 69 | 68 | imbi1i | ⊢ ( ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 )  ↔  ( 𝑧  =  𝑦  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 70 | 69 | albii | ⊢ ( ∀ 𝑧 ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 )  ↔  ∀ 𝑧 ( 𝑧  =  𝑦  →  𝑦 𝐵 𝑧 ) ) | 
						
							| 71 |  | breq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑦 𝐵 𝑧  ↔  𝑦 𝐵 𝑦 ) ) | 
						
							| 72 | 71 | equsalvw | ⊢ ( ∀ 𝑧 ( 𝑧  =  𝑦  →  𝑦 𝐵 𝑧 )  ↔  𝑦 𝐵 𝑦 ) | 
						
							| 73 | 70 72 | bitri | ⊢ ( ∀ 𝑧 ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 )  ↔  𝑦 𝐵 𝑦 ) | 
						
							| 74 | 73 | imbi2i | ⊢ ( ( 𝑥 𝐴 𝑦  →  ∀ 𝑧 ( 𝑦  =  𝑧  →  𝑦 𝐵 𝑧 ) )  ↔  ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) ) | 
						
							| 75 | 66 67 74 | 3bitri | ⊢ ( ∀ 𝑧 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) ) | 
						
							| 76 | 75 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) ) | 
						
							| 77 | 61 62 76 | 3bitr2i | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦  =  𝑧  ∧  𝑥 𝐴 𝑦 )  →  𝑦 𝐵 𝑧 )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) ) | 
						
							| 78 | 45 58 77 | 3bitri | ⊢ ( (  I   ↾  ran  𝐴 )  ⊆  𝐵  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) ) | 
						
							| 79 | 42 78 | anbi12i | ⊢ ( ( (  I   ↾  dom  𝐴 )  ⊆  𝐵  ∧  (  I   ↾  ran  𝐴 )  ⊆  𝐵 )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) ) ) | 
						
							| 80 |  | 19.26-2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 )  ∧  ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) ) ) | 
						
							| 81 |  | pm4.76 | ⊢ ( ( ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 )  ∧  ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) )  ↔  ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐵 𝑥  ∧  𝑦 𝐵 𝑦 ) ) ) | 
						
							| 82 | 81 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦  →  𝑥 𝐵 𝑥 )  ∧  ( 𝑥 𝐴 𝑦  →  𝑦 𝐵 𝑦 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐵 𝑥  ∧  𝑦 𝐵 𝑦 ) ) ) | 
						
							| 83 | 79 80 82 | 3bitr2i | ⊢ ( ( (  I   ↾  dom  𝐴 )  ⊆  𝐵  ∧  (  I   ↾  ran  𝐴 )  ⊆  𝐵 )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐵 𝑥  ∧  𝑦 𝐵 𝑦 ) ) ) | 
						
							| 84 | 2 3 83 | 3bitr2i | ⊢ ( (  I   ↾  ( dom  𝐴  ∪  ran  𝐴 ) )  ⊆  𝐵  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐵 𝑥  ∧  𝑦 𝐵 𝑦 ) ) ) |