Metamath Proof Explorer


Theorem undmrnresiss

Description: Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg . (Contributed by RP, 26-Sep-2020)

Ref Expression
Assertion undmrnresiss ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐵 ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥𝑦 𝐵 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 resundi ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran 𝐴 ) )
2 1 sseq1i ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐵 ↔ ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran 𝐴 ) ) ⊆ 𝐵 )
3 unss ( ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴 ) ⊆ 𝐵 ) ↔ ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran 𝐴 ) ) ⊆ 𝐵 )
4 relres Rel ( I ↾ dom 𝐴 )
5 ssrel ( Rel ( I ↾ dom 𝐴 ) → ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( I ↾ dom 𝐴 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐵 ) ) )
6 4 5 ax-mp ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( I ↾ dom 𝐴 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐵 ) )
7 vex 𝑥 ∈ V
8 7 eldm ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 𝑥 𝐴 𝑦 )
9 df-br ( 𝑥 I 𝑧 ↔ ⟨ 𝑥 , 𝑧 ⟩ ∈ I )
10 vex 𝑧 ∈ V
11 10 ideq ( 𝑥 I 𝑧𝑥 = 𝑧 )
12 9 11 bitr3i ( ⟨ 𝑥 , 𝑧 ⟩ ∈ I ↔ 𝑥 = 𝑧 )
13 8 12 anbi12ci ( ( 𝑥 ∈ dom 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ I ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 𝑥 𝐴 𝑦 ) )
14 10 opelresi ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( I ↾ dom 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ I ) )
15 19.42v ( ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 𝑥 𝐴 𝑦 ) )
16 13 14 15 3bitr4i ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( I ↾ dom 𝐴 ) ↔ ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) )
17 df-br ( 𝑥 𝐵 𝑧 ↔ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐵 )
18 17 bicomi ( ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐵𝑥 𝐵 𝑧 )
19 16 18 imbi12i ( ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( I ↾ dom 𝐴 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) )
20 19 2albii ( ∀ 𝑥𝑧 ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( I ↾ dom 𝐴 ) → ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐵 ) ↔ ∀ 𝑥𝑧 ( ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) )
21 19.23v ( ∀ 𝑦 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) )
22 21 bicomi ( ( ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) )
23 22 2albii ( ∀ 𝑥𝑧 ( ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑥𝑧𝑦 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) )
24 alcom ( ∀ 𝑧𝑦 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦𝑧 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) )
25 ancomst ( ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑦𝑥 = 𝑧 ) → 𝑥 𝐵 𝑧 ) )
26 impexp ( ( ( 𝑥 𝐴 𝑦𝑥 = 𝑧 ) → 𝑥 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ) )
27 25 26 bitri ( ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ) )
28 27 albii ( ∀ 𝑧 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ) )
29 19.21v ( ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ) )
30 equcom ( 𝑥 = 𝑧𝑧 = 𝑥 )
31 30 imbi1i ( ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ↔ ( 𝑧 = 𝑥𝑥 𝐵 𝑧 ) )
32 31 albii ( ∀ 𝑧 ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 = 𝑥𝑥 𝐵 𝑧 ) )
33 breq2 ( 𝑧 = 𝑥 → ( 𝑥 𝐵 𝑧𝑥 𝐵 𝑥 ) )
34 33 equsalvw ( ∀ 𝑧 ( 𝑧 = 𝑥𝑥 𝐵 𝑧 ) ↔ 𝑥 𝐵 𝑥 )
35 32 34 bitri ( ∀ 𝑧 ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ↔ 𝑥 𝐵 𝑥 )
36 35 imbi2i ( ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑥 = 𝑧𝑥 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) )
37 28 29 36 3bitri ( ∀ 𝑧 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) )
38 37 albii ( ∀ 𝑦𝑧 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦 ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) )
39 24 38 bitri ( ∀ 𝑧𝑦 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦 ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) )
40 39 albii ( ∀ 𝑥𝑧𝑦 ( ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) )
41 23 40 bitri ( ∀ 𝑥𝑧 ( ∃ 𝑦 ( 𝑥 = 𝑧𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) )
42 6 20 41 3bitri ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) )
43 relres Rel ( I ↾ ran 𝐴 )
44 ssrel ( Rel ( I ↾ ran 𝐴 ) → ( ( I ↾ ran 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑦𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( I ↾ ran 𝐴 ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵 ) ) )
45 43 44 ax-mp ( ( I ↾ ran 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑦𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( I ↾ ran 𝐴 ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵 ) )
46 vex 𝑦 ∈ V
47 46 elrn ( 𝑦 ∈ ran 𝐴 ↔ ∃ 𝑥 𝑥 𝐴 𝑦 )
48 df-br ( 𝑦 I 𝑧 ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ I )
49 10 ideq ( 𝑦 I 𝑧𝑦 = 𝑧 )
50 48 49 bitr3i ( ⟨ 𝑦 , 𝑧 ⟩ ∈ I ↔ 𝑦 = 𝑧 )
51 47 50 anbi12ci ( ( 𝑦 ∈ ran 𝐴 ∧ ⟨ 𝑦 , 𝑧 ⟩ ∈ I ) ↔ ( 𝑦 = 𝑧 ∧ ∃ 𝑥 𝑥 𝐴 𝑦 ) )
52 10 opelresi ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( I ↾ ran 𝐴 ) ↔ ( 𝑦 ∈ ran 𝐴 ∧ ⟨ 𝑦 , 𝑧 ⟩ ∈ I ) )
53 19.42v ( ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) ↔ ( 𝑦 = 𝑧 ∧ ∃ 𝑥 𝑥 𝐴 𝑦 ) )
54 51 52 53 3bitr4i ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( I ↾ ran 𝐴 ) ↔ ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) )
55 df-br ( 𝑦 𝐵 𝑧 ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵 )
56 55 bicomi ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵𝑦 𝐵 𝑧 )
57 54 56 imbi12i ( ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( I ↾ ran 𝐴 ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) )
58 57 2albii ( ∀ 𝑦𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( I ↾ ran 𝐴 ) → ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵 ) ↔ ∀ 𝑦𝑧 ( ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) )
59 19.23v ( ∀ 𝑥 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) )
60 59 bicomi ( ( ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑥 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) )
61 60 2albii ( ∀ 𝑦𝑧 ( ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑦𝑧𝑥 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) )
62 alrot3 ( ∀ 𝑥𝑦𝑧 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑦𝑧𝑥 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) )
63 ancomst ( ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) → 𝑦 𝐵 𝑧 ) )
64 impexp ( ( ( 𝑥 𝐴 𝑦𝑦 = 𝑧 ) → 𝑦 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ) )
65 63 64 bitri ( ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ) )
66 65 albii ( ∀ 𝑧 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ) )
67 19.21v ( ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ) )
68 equcom ( 𝑦 = 𝑧𝑧 = 𝑦 )
69 68 imbi1i ( ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ↔ ( 𝑧 = 𝑦𝑦 𝐵 𝑧 ) )
70 69 albii ( ∀ 𝑧 ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 = 𝑦𝑦 𝐵 𝑧 ) )
71 breq2 ( 𝑧 = 𝑦 → ( 𝑦 𝐵 𝑧𝑦 𝐵 𝑦 ) )
72 71 equsalvw ( ∀ 𝑧 ( 𝑧 = 𝑦𝑦 𝐵 𝑧 ) ↔ 𝑦 𝐵 𝑦 )
73 70 72 bitri ( ∀ 𝑧 ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ↔ 𝑦 𝐵 𝑦 )
74 73 imbi2i ( ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑦 = 𝑧𝑦 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) )
75 66 67 74 3bitri ( ∀ 𝑧 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) )
76 75 2albii ( ∀ 𝑥𝑦𝑧 ( ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) )
77 61 62 76 3bitr2i ( ∀ 𝑦𝑧 ( ∃ 𝑥 ( 𝑦 = 𝑧𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) )
78 45 58 77 3bitri ( ( I ↾ ran 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) )
79 42 78 anbi12i ( ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴 ) ⊆ 𝐵 ) ↔ ( ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) ∧ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) ) )
80 19.26-2 ( ∀ 𝑥𝑦 ( ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) ∧ ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) ) ↔ ( ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) ∧ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) ) )
81 pm4.76 ( ( ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) ∧ ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥𝑦 𝐵 𝑦 ) ) )
82 81 2albii ( ∀ 𝑥𝑦 ( ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑥 ) ∧ ( 𝑥 𝐴 𝑦𝑦 𝐵 𝑦 ) ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥𝑦 𝐵 𝑦 ) ) )
83 79 80 82 3bitr2i ( ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴 ) ⊆ 𝐵 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥𝑦 𝐵 𝑦 ) ) )
84 2 3 83 3bitr2i ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐵 ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥𝑦 𝐵 𝑦 ) ) )