| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resundi |
⊢ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran 𝐴 ) ) |
| 2 |
1
|
sseq1i |
⊢ ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐵 ↔ ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran 𝐴 ) ) ⊆ 𝐵 ) |
| 3 |
|
unss |
⊢ ( ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴 ) ⊆ 𝐵 ) ↔ ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran 𝐴 ) ) ⊆ 𝐵 ) |
| 4 |
|
relres |
⊢ Rel ( I ↾ dom 𝐴 ) |
| 5 |
|
ssrel |
⊢ ( Rel ( I ↾ dom 𝐴 ) → ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( I ↾ dom 𝐴 ) → 〈 𝑥 , 𝑧 〉 ∈ 𝐵 ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( I ↾ dom 𝐴 ) → 〈 𝑥 , 𝑧 〉 ∈ 𝐵 ) ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
7
|
eldm |
⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 𝑥 𝐴 𝑦 ) |
| 9 |
|
df-br |
⊢ ( 𝑥 I 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ I ) |
| 10 |
|
vex |
⊢ 𝑧 ∈ V |
| 11 |
10
|
ideq |
⊢ ( 𝑥 I 𝑧 ↔ 𝑥 = 𝑧 ) |
| 12 |
9 11
|
bitr3i |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ I ↔ 𝑥 = 𝑧 ) |
| 13 |
8 12
|
anbi12ci |
⊢ ( ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ I ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 𝑥 𝐴 𝑦 ) ) |
| 14 |
10
|
opelresi |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( I ↾ dom 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ I ) ) |
| 15 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 𝑥 𝐴 𝑦 ) ) |
| 16 |
13 14 15
|
3bitr4i |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( I ↾ dom 𝐴 ) ↔ ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) ) |
| 17 |
|
df-br |
⊢ ( 𝑥 𝐵 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐵 ) |
| 18 |
17
|
bicomi |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ 𝐵 ↔ 𝑥 𝐵 𝑧 ) |
| 19 |
16 18
|
imbi12i |
⊢ ( ( 〈 𝑥 , 𝑧 〉 ∈ ( I ↾ dom 𝐴 ) → 〈 𝑥 , 𝑧 〉 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ) |
| 20 |
19
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( I ↾ dom 𝐴 ) → 〈 𝑥 , 𝑧 〉 ∈ 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ) |
| 21 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ) |
| 22 |
21
|
bicomi |
⊢ ( ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ) |
| 23 |
22
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ) |
| 24 |
|
alcom |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ) |
| 25 |
|
ancomst |
⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 = 𝑧 ) → 𝑥 𝐵 𝑧 ) ) |
| 26 |
|
impexp |
⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 = 𝑧 ) → 𝑥 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ) ) |
| 27 |
25 26
|
bitri |
⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ) ) |
| 28 |
27
|
albii |
⊢ ( ∀ 𝑧 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ) ) |
| 29 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ) ) |
| 30 |
|
equcom |
⊢ ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑥 ) |
| 31 |
30
|
imbi1i |
⊢ ( ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ↔ ( 𝑧 = 𝑥 → 𝑥 𝐵 𝑧 ) ) |
| 32 |
31
|
albii |
⊢ ( ∀ 𝑧 ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 = 𝑥 → 𝑥 𝐵 𝑧 ) ) |
| 33 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 𝐵 𝑧 ↔ 𝑥 𝐵 𝑥 ) ) |
| 34 |
33
|
equsalvw |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑥 → 𝑥 𝐵 𝑧 ) ↔ 𝑥 𝐵 𝑥 ) |
| 35 |
32 34
|
bitri |
⊢ ( ∀ 𝑧 ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ↔ 𝑥 𝐵 𝑥 ) |
| 36 |
35
|
imbi2i |
⊢ ( ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑥 = 𝑧 → 𝑥 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ) |
| 37 |
28 29 36
|
3bitri |
⊢ ( ∀ 𝑧 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ) |
| 38 |
37
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ) |
| 39 |
24 38
|
bitri |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ) |
| 40 |
39
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ) |
| 41 |
23 40
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑥 𝐵 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ) |
| 42 |
6 20 41
|
3bitri |
⊢ ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ) |
| 43 |
|
relres |
⊢ Rel ( I ↾ ran 𝐴 ) |
| 44 |
|
ssrel |
⊢ ( Rel ( I ↾ ran 𝐴 ) → ( ( I ↾ ran 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑦 ∀ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ ran 𝐴 ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) ) ) |
| 45 |
43 44
|
ax-mp |
⊢ ( ( I ↾ ran 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑦 ∀ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ ran 𝐴 ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) ) |
| 46 |
|
vex |
⊢ 𝑦 ∈ V |
| 47 |
46
|
elrn |
⊢ ( 𝑦 ∈ ran 𝐴 ↔ ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 48 |
|
df-br |
⊢ ( 𝑦 I 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ I ) |
| 49 |
10
|
ideq |
⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 50 |
48 49
|
bitr3i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ I ↔ 𝑦 = 𝑧 ) |
| 51 |
47 50
|
anbi12ci |
⊢ ( ( 𝑦 ∈ ran 𝐴 ∧ 〈 𝑦 , 𝑧 〉 ∈ I ) ↔ ( 𝑦 = 𝑧 ∧ ∃ 𝑥 𝑥 𝐴 𝑦 ) ) |
| 52 |
10
|
opelresi |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ ran 𝐴 ) ↔ ( 𝑦 ∈ ran 𝐴 ∧ 〈 𝑦 , 𝑧 〉 ∈ I ) ) |
| 53 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) ↔ ( 𝑦 = 𝑧 ∧ ∃ 𝑥 𝑥 𝐴 𝑦 ) ) |
| 54 |
51 52 53
|
3bitr4i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ ran 𝐴 ) ↔ ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) ) |
| 55 |
|
df-br |
⊢ ( 𝑦 𝐵 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) |
| 56 |
55
|
bicomi |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ↔ 𝑦 𝐵 𝑧 ) |
| 57 |
54 56
|
imbi12i |
⊢ ( ( 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ ran 𝐴 ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ) |
| 58 |
57
|
2albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ ran 𝐴 ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ) |
| 59 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ) |
| 60 |
59
|
bicomi |
⊢ ( ( ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑥 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ) |
| 61 |
60
|
2albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ) |
| 62 |
|
alrot3 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ) |
| 63 |
|
ancomst |
⊢ ( ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑦 = 𝑧 ) → 𝑦 𝐵 𝑧 ) ) |
| 64 |
|
impexp |
⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑦 = 𝑧 ) → 𝑦 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ) ) |
| 65 |
63 64
|
bitri |
⊢ ( ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ) ) |
| 66 |
65
|
albii |
⊢ ( ∀ 𝑧 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ) ) |
| 67 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ) ) |
| 68 |
|
equcom |
⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) |
| 69 |
68
|
imbi1i |
⊢ ( ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ↔ ( 𝑧 = 𝑦 → 𝑦 𝐵 𝑧 ) ) |
| 70 |
69
|
albii |
⊢ ( ∀ 𝑧 ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 = 𝑦 → 𝑦 𝐵 𝑧 ) ) |
| 71 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑦 𝐵 𝑧 ↔ 𝑦 𝐵 𝑦 ) ) |
| 72 |
71
|
equsalvw |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝑦 𝐵 𝑧 ) ↔ 𝑦 𝐵 𝑦 ) |
| 73 |
70 72
|
bitri |
⊢ ( ∀ 𝑧 ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ↔ 𝑦 𝐵 𝑦 ) |
| 74 |
73
|
imbi2i |
⊢ ( ( 𝑥 𝐴 𝑦 → ∀ 𝑧 ( 𝑦 = 𝑧 → 𝑦 𝐵 𝑧 ) ) ↔ ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) |
| 75 |
66 67 74
|
3bitri |
⊢ ( ∀ 𝑧 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) |
| 76 |
75
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) |
| 77 |
61 62 76
|
3bitr2i |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ∃ 𝑥 ( 𝑦 = 𝑧 ∧ 𝑥 𝐴 𝑦 ) → 𝑦 𝐵 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) |
| 78 |
45 58 77
|
3bitri |
⊢ ( ( I ↾ ran 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) |
| 79 |
42 78
|
anbi12i |
⊢ ( ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴 ) ⊆ 𝐵 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) ) |
| 80 |
|
19.26-2 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ∧ ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) ) |
| 81 |
|
pm4.76 |
⊢ ( ( ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ∧ ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) ↔ ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥 ∧ 𝑦 𝐵 𝑦 ) ) ) |
| 82 |
81
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑥 ) ∧ ( 𝑥 𝐴 𝑦 → 𝑦 𝐵 𝑦 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥 ∧ 𝑦 𝐵 𝑦 ) ) ) |
| 83 |
79 80 82
|
3bitr2i |
⊢ ( ( ( I ↾ dom 𝐴 ) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴 ) ⊆ 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥 ∧ 𝑦 𝐵 𝑦 ) ) ) |
| 84 |
2 3 83
|
3bitr2i |
⊢ ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐵 𝑥 ∧ 𝑦 𝐵 𝑦 ) ) ) |