Metamath Proof Explorer


Theorem unen

Description: Equinumerosity of union of disjoint sets. Theorem 4 of Suppes p. 92. (Contributed by NM, 11-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion unen ABCDAC=BD=ACBD

Proof

Step Hyp Ref Expression
1 bren ABxx:A1-1 ontoB
2 bren CDyy:C1-1 ontoD
3 exdistrv xyx:A1-1 ontoBy:C1-1 ontoDxx:A1-1 ontoByy:C1-1 ontoD
4 vex xV
5 vex yV
6 4 5 unex xyV
7 f1oun x:A1-1 ontoBy:C1-1 ontoDAC=BD=xy:AC1-1 ontoBD
8 f1oen3g xyVxy:AC1-1 ontoBDACBD
9 6 7 8 sylancr x:A1-1 ontoBy:C1-1 ontoDAC=BD=ACBD
10 9 ex x:A1-1 ontoBy:C1-1 ontoDAC=BD=ACBD
11 10 exlimivv xyx:A1-1 ontoBy:C1-1 ontoDAC=BD=ACBD
12 3 11 sylbir xx:A1-1 ontoByy:C1-1 ontoDAC=BD=ACBD
13 1 2 12 syl2anb ABCDAC=BD=ACBD
14 13 imp ABCDAC=BD=ACBD