Metamath Proof Explorer


Theorem uniin

Description: The class union of the intersection of two classes. Exercise 4.12(n) of Mendelson p. 235. See uniinqs for a condition where equality holds. (Contributed by NM, 4-Dec-2003) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion uniin ABAB

Proof

Step Hyp Ref Expression
1 19.40 yxyyAxyyByxyyAyxyyB
2 elin yAByAyB
3 2 anbi2i xyyABxyyAyB
4 anandi xyyAyBxyyAxyyB
5 3 4 bitri xyyABxyyAxyyB
6 5 exbii yxyyAByxyyAxyyB
7 eluni xAyxyyA
8 eluni xByxyyB
9 7 8 anbi12i xAxByxyyAyxyyB
10 1 6 9 3imtr4i yxyyABxAxB
11 eluni xAByxyyAB
12 elin xABxAxB
13 10 11 12 3imtr4i xABxAB
14 13 ssriv ABAB