Metamath Proof Explorer


Theorem uniiunlem

Description: A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006) (Proof shortened by Mario Carneiro, 26-Sep-2015)

Ref Expression
Assertion uniiunlem xABDxABCy|xAy=BC

Proof

Step Hyp Ref Expression
1 eqeq1 y=zy=Bz=B
2 1 rexbidv y=zxAy=BxAz=B
3 2 cbvabv y|xAy=B=z|xAz=B
4 3 sseq1i y|xAy=BCz|xAz=BC
5 r19.23v xAz=BzCxAz=BzC
6 5 albii zxAz=BzCzxAz=BzC
7 ralcom4 xAzz=BzCzxAz=BzC
8 abss z|xAz=BCzxAz=BzC
9 6 7 8 3bitr4i xAzz=BzCz|xAz=BC
10 4 9 bitr4i y|xAy=BCxAzz=BzC
11 nfv zBC
12 eleq1 z=BzCBC
13 11 12 ceqsalg BDzz=BzCBC
14 13 ralimi xABDxAzz=BzCBC
15 ralbi xAzz=BzCBCxAzz=BzCxABC
16 14 15 syl xABDxAzz=BzCxABC
17 10 16 bitr2id xABDxABCy|xAy=BC