Metamath Proof Explorer


Theorem unitmulclb

Description: Reversal of unitmulcl in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses unitmulcl.1 U=UnitR
unitmulcl.2 ·˙=R
unitmulclb.1 B=BaseR
Assertion unitmulclb RCRingXBYBX·˙YUXUYU

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U=UnitR
2 unitmulcl.2 ·˙=R
3 unitmulclb.1 B=BaseR
4 simp1 RCRingXBYBRCRing
5 simp2 RCRingXBYBXB
6 simp3 RCRingXBYBYB
7 eqid rR=rR
8 3 7 2 dvdsrmul XBYBXrRY·˙X
9 5 6 8 syl2anc RCRingXBYBXrRY·˙X
10 3 2 crngcom RCRingXBYBX·˙Y=Y·˙X
11 9 10 breqtrrd RCRingXBYBXrRX·˙Y
12 1 7 dvdsunit RCRingXrRX·˙YX·˙YUXU
13 12 3expia RCRingXrRX·˙YX·˙YUXU
14 4 11 13 syl2anc RCRingXBYBX·˙YUXU
15 3 7 2 dvdsrmul YBXBYrRX·˙Y
16 6 5 15 syl2anc RCRingXBYBYrRX·˙Y
17 1 7 dvdsunit RCRingYrRX·˙YX·˙YUYU
18 17 3expia RCRingYrRX·˙YX·˙YUYU
19 4 16 18 syl2anc RCRingXBYBX·˙YUYU
20 14 19 jcad RCRingXBYBX·˙YUXUYU
21 crngring RCRingRRing
22 21 3ad2ant1 RCRingXBYBRRing
23 1 2 unitmulcl RRingXUYUX·˙YU
24 23 3expib RRingXUYUX·˙YU
25 22 24 syl RCRingXBYBXUYUX·˙YU
26 20 25 impbid RCRingXBYBX·˙YUXUYU