Metamath Proof Explorer


Theorem unitnmn0

Description: The norm of a unit is nonzero in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nminvr.n N = norm R
nminvr.u U = Unit R
Assertion unitnmn0 R NrmRing R NzRing A U N A 0

Proof

Step Hyp Ref Expression
1 nminvr.n N = norm R
2 nminvr.u U = Unit R
3 nrgngp R NrmRing R NrmGrp
4 3 3ad2ant1 R NrmRing R NzRing A U R NrmGrp
5 eqid Base R = Base R
6 5 2 unitcl A U A Base R
7 6 3ad2ant3 R NrmRing R NzRing A U A Base R
8 eqid 0 R = 0 R
9 2 8 nzrunit R NzRing A U A 0 R
10 9 3adant1 R NrmRing R NzRing A U A 0 R
11 5 1 8 nmne0 R NrmGrp A Base R A 0 R N A 0
12 4 7 10 11 syl3anc R NrmRing R NzRing A U N A 0