Metamath Proof Explorer


Theorem unixp

Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006)

Ref Expression
Assertion unixp A×BA×B=AB

Proof

Step Hyp Ref Expression
1 relxp RelA×B
2 relfld RelA×BA×B=domA×BranA×B
3 1 2 ax-mp A×B=domA×BranA×B
4 xpeq2 B=A×B=A×
5 xp0 A×=
6 4 5 eqtrdi B=A×B=
7 6 necon3i A×BB
8 xpeq1 A=A×B=×B
9 0xp ×B=
10 8 9 eqtrdi A=A×B=
11 10 necon3i A×BA
12 dmxp BdomA×B=A
13 rnxp AranA×B=B
14 uneq12 domA×B=AranA×B=BdomA×BranA×B=AB
15 12 13 14 syl2an BAdomA×BranA×B=AB
16 7 11 15 syl2anc A×BdomA×BranA×B=AB
17 3 16 eqtrid A×BA×B=AB