Metamath Proof Explorer


Theorem unixp0

Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006)

Ref Expression
Assertion unixp0 A×B=A×B=

Proof

Step Hyp Ref Expression
1 unieq A×B=A×B=
2 uni0 =
3 1 2 eqtrdi A×B=A×B=
4 n0 A×BzzA×B
5 elxp3 zA×Bxyxy=zxyA×B
6 elssuni xyA×BxyA×B
7 vex xV
8 vex yV
9 7 8 opnzi xy
10 ssn0 xyA×BxyA×B
11 6 9 10 sylancl xyA×BA×B
12 11 adantl xy=zxyA×BA×B
13 12 exlimivv xyxy=zxyA×BA×B
14 5 13 sylbi zA×BA×B
15 14 exlimiv zzA×BA×B
16 4 15 sylbi A×BA×B
17 16 necon4i A×B=A×B=
18 3 17 impbii A×B=A×B=