Metamath Proof Explorer


Theorem unocv

Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis inocv.o ˙=ocvW
Assertion unocv ˙AB=˙A˙B

Proof

Step Hyp Ref Expression
1 inocv.o ˙=ocvW
2 unss ABaseWBBaseWABBaseW
3 2 bicomi ABBaseWABaseWBBaseW
4 ralunb yABz𝑖Wy=0ScalarWyAz𝑖Wy=0ScalarWyBz𝑖Wy=0ScalarW
5 3 4 anbi12i ABBaseWyABz𝑖Wy=0ScalarWABaseWBBaseWyAz𝑖Wy=0ScalarWyBz𝑖Wy=0ScalarW
6 an4 ABaseWBBaseWyAz𝑖Wy=0ScalarWyBz𝑖Wy=0ScalarWABaseWyAz𝑖Wy=0ScalarWBBaseWyBz𝑖Wy=0ScalarW
7 5 6 bitri ABBaseWyABz𝑖Wy=0ScalarWABaseWyAz𝑖Wy=0ScalarWBBaseWyBz𝑖Wy=0ScalarW
8 7 anbi2i zBaseWABBaseWyABz𝑖Wy=0ScalarWzBaseWABaseWyAz𝑖Wy=0ScalarWBBaseWyBz𝑖Wy=0ScalarW
9 eqid BaseW=BaseW
10 eqid 𝑖W=𝑖W
11 eqid ScalarW=ScalarW
12 eqid 0ScalarW=0ScalarW
13 9 10 11 12 1 elocv z˙ABABBaseWzBaseWyABz𝑖Wy=0ScalarW
14 3anan12 ABBaseWzBaseWyABz𝑖Wy=0ScalarWzBaseWABBaseWyABz𝑖Wy=0ScalarW
15 13 14 bitri z˙ABzBaseWABBaseWyABz𝑖Wy=0ScalarW
16 9 10 11 12 1 elocv z˙AABaseWzBaseWyAz𝑖Wy=0ScalarW
17 3anan12 ABaseWzBaseWyAz𝑖Wy=0ScalarWzBaseWABaseWyAz𝑖Wy=0ScalarW
18 16 17 bitri z˙AzBaseWABaseWyAz𝑖Wy=0ScalarW
19 9 10 11 12 1 elocv z˙BBBaseWzBaseWyBz𝑖Wy=0ScalarW
20 3anan12 BBaseWzBaseWyBz𝑖Wy=0ScalarWzBaseWBBaseWyBz𝑖Wy=0ScalarW
21 19 20 bitri z˙BzBaseWBBaseWyBz𝑖Wy=0ScalarW
22 18 21 anbi12i z˙Az˙BzBaseWABaseWyAz𝑖Wy=0ScalarWzBaseWBBaseWyBz𝑖Wy=0ScalarW
23 elin z˙A˙Bz˙Az˙B
24 anandi zBaseWABaseWyAz𝑖Wy=0ScalarWBBaseWyBz𝑖Wy=0ScalarWzBaseWABaseWyAz𝑖Wy=0ScalarWzBaseWBBaseWyBz𝑖Wy=0ScalarW
25 22 23 24 3bitr4i z˙A˙BzBaseWABaseWyAz𝑖Wy=0ScalarWBBaseWyBz𝑖Wy=0ScalarW
26 8 15 25 3bitr4i z˙ABz˙A˙B
27 26 eqriv ˙AB=˙A˙B