Description: A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | untangtr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tr | |
|
2 | ssralv | |
|
3 | 1 2 | sylbi | |
4 | elequ1 | |
|
5 | elequ2 | |
|
6 | 4 5 | bitrd | |
7 | 6 | notbid | |
8 | 7 | cbvralvw | |
9 | untuni | |
|
10 | 8 9 | bitri | |
11 | 3 10 | imbitrdi | |
12 | untelirr | |
|
13 | 12 | ralimi | |
14 | 11 13 | impbid1 | |