Metamath Proof Explorer


Theorem untangtr

Description: A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011)

Ref Expression
Assertion untangtr TrAxA¬xxxAyx¬yy

Proof

Step Hyp Ref Expression
1 df-tr TrAAA
2 ssralv AAxA¬xxxA¬xx
3 1 2 sylbi TrAxA¬xxxA¬xx
4 elequ1 x=yxxyx
5 elequ2 x=yyxyy
6 4 5 bitrd x=yxxyy
7 6 notbid x=y¬xx¬yy
8 7 cbvralvw xA¬xxyA¬yy
9 untuni yA¬yyxAyx¬yy
10 8 9 bitri xA¬xxxAyx¬yy
11 3 10 imbitrdi TrAxA¬xxxAyx¬yy
12 untelirr yx¬yy¬xx
13 12 ralimi xAyx¬yyxA¬xx
14 11 13 impbid1 TrAxA¬xxxAyx¬yy