Metamath Proof Explorer


Theorem upciclem3

Description: Lemma for upciclem4 . (Contributed by Zhi Wang, 17-Sep-2025)

Ref Expression
Hypotheses upcic.b B = Base D
upcic.c C = Base E
upcic.h H = Hom D
upcic.j J = Hom E
upcic.o O = comp E
upcic.f φ F D Func E G
upcic.x φ X B
upcic.y φ Y B
upcic.z φ Z C
upcic.m φ M Z J F X
upcic.1 φ w B f Z J F w ∃! k X H w f = X G w k Z F X O F w M
upciclem3.od · ˙ = comp D
upciclem3.k φ K X H Y
upciclem3.l φ L Y H X
upciclem3.mn φ M = Y G X L Z F Y O F X N
upciclem3.nm φ N = X G Y K Z F X O F Y M
Assertion upciclem3 φ L X Y · ˙ X K = Id D X

Proof

Step Hyp Ref Expression
1 upcic.b B = Base D
2 upcic.c C = Base E
3 upcic.h H = Hom D
4 upcic.j J = Hom E
5 upcic.o O = comp E
6 upcic.f φ F D Func E G
7 upcic.x φ X B
8 upcic.y φ Y B
9 upcic.z φ Z C
10 upcic.m φ M Z J F X
11 upcic.1 φ w B f Z J F w ∃! k X H w f = X G w k Z F X O F w M
12 upciclem3.od · ˙ = comp D
13 upciclem3.k φ K X H Y
14 upciclem3.l φ L Y H X
15 upciclem3.mn φ M = Y G X L Z F Y O F X N
16 upciclem3.nm φ N = X G Y K Z F X O F Y M
17 fveq2 p = L X Y · ˙ X K X G X p = X G X L X Y · ˙ X K
18 17 oveq1d p = L X Y · ˙ X K X G X p Z F X O F X M = X G X L X Y · ˙ X K Z F X O F X M
19 18 eqeq2d p = L X Y · ˙ X K M = X G X p Z F X O F X M M = X G X L X Y · ˙ X K Z F X O F X M
20 fveq2 p = Id D X X G X p = X G X Id D X
21 20 oveq1d p = Id D X X G X p Z F X O F X M = X G X Id D X Z F X O F X M
22 21 eqeq2d p = Id D X M = X G X p Z F X O F X M M = X G X Id D X Z F X O F X M
23 11 7 10 upciclem1 φ ∃! p X H X M = X G X p Z F X O F X M
24 6 funcrcl2 φ D Cat
25 1 3 12 24 7 8 7 13 14 catcocl φ L X Y · ˙ X K X H X
26 eqid Id D = Id D
27 1 3 26 24 7 catidcl φ Id D X X H X
28 1 2 3 4 5 6 7 8 7 9 10 12 13 14 16 upciclem2 φ X G X L X Y · ˙ X K Z F X O F X M = Y G X L Z F Y O F X N
29 15 28 eqtr4d φ M = X G X L X Y · ˙ X K Z F X O F X M
30 eqid Id E = Id E
31 1 26 30 6 7 funcid φ X G X Id D X = Id E F X
32 31 oveq1d φ X G X Id D X Z F X O F X M = Id E F X Z F X O F X M
33 6 funcrcl3 φ E Cat
34 1 2 6 funcf1 φ F : B C
35 34 7 ffvelcdmd φ F X C
36 2 4 30 33 9 5 35 10 catlid φ Id E F X Z F X O F X M = M
37 32 36 eqtr2d φ M = X G X Id D X Z F X O F X M
38 19 22 23 25 27 29 37 reu2eqd φ L X Y · ˙ X K = Id D X