Metamath Proof Explorer


Theorem upwordisword

Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion upwordisword Could not format assertion : No typesetting found for |- ( A e. UpWord S -> A e. Word S ) with typecode |-

Proof

Step Hyp Ref Expression
1 eleq1 w = A w Word S A Word S
2 df-upword Could not format UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } : No typesetting found for |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode |-
3 2 abeq2i Could not format ( w e. UpWord S <-> ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) ) : No typesetting found for |- ( w e. UpWord S <-> ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) ) with typecode |-
4 3 simplbi Could not format ( w e. UpWord S -> w e. Word S ) : No typesetting found for |- ( w e. UpWord S -> w e. Word S ) with typecode |-
5 1 4 vtoclga Could not format ( A e. UpWord S -> A e. Word S ) : No typesetting found for |- ( A e. UpWord S -> A e. Word S ) with typecode |-