Metamath Proof Explorer


Theorem usgredg3

Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)

Ref Expression
Hypotheses usgredg3.v V=VtxG
usgredg3.e E=iEdgG
Assertion usgredg3 GUSGraphXdomExVyVxyEX=xy

Proof

Step Hyp Ref Expression
1 usgredg3.v V=VtxG
2 usgredg3.e E=iEdgG
3 usgrfun GUSGraphFuniEdgG
4 2 funeqi FunEFuniEdgG
5 3 4 sylibr GUSGraphFunE
6 fvelrn FunEXdomEEXranE
7 5 6 sylan GUSGraphXdomEEXranE
8 edgval EdgG=raniEdgG
9 8 a1i GUSGraphEdgG=raniEdgG
10 2 eqcomi iEdgG=E
11 10 rneqi raniEdgG=ranE
12 9 11 eqtrdi GUSGraphEdgG=ranE
13 12 adantr GUSGraphXdomEEdgG=ranE
14 7 13 eleqtrrd GUSGraphXdomEEXEdgG
15 eqid EdgG=EdgG
16 1 15 usgredg GUSGraphEXEdgGxVyVxyEX=xy
17 14 16 syldan GUSGraphXdomExVyVxyEX=xy