Metamath Proof Explorer


Theorem usgrstrrepe

Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring ( ph -> G Struct X ) , it would be sufficient to require ( ph -> Fun ( G \ { (/) } ) ) and ( ph -> G e. _V ) . (Contributed by AV, 13-Nov-2021) (Proof shortened by AV, 16-Nov-2021)

Ref Expression
Hypotheses usgrstrrepe.v V=BaseG
usgrstrrepe.i I=efndx
usgrstrrepe.s φGStructX
usgrstrrepe.b φBasendxdomG
usgrstrrepe.w φEW
usgrstrrepe.e φE:domE1-1x𝒫V|x=2
Assertion usgrstrrepe φGsSetIEUSGraph

Proof

Step Hyp Ref Expression
1 usgrstrrepe.v V=BaseG
2 usgrstrrepe.i I=efndx
3 usgrstrrepe.s φGStructX
4 usgrstrrepe.b φBasendxdomG
5 usgrstrrepe.w φEW
6 usgrstrrepe.e φE:domE1-1x𝒫V|x=2
7 2 3 4 5 setsvtx φVtxGsSetIE=BaseG
8 7 1 eqtr4di φVtxGsSetIE=V
9 8 pweqd φ𝒫VtxGsSetIE=𝒫V
10 9 rabeqdv φx𝒫VtxGsSetIE|x=2=x𝒫V|x=2
11 f1eq3 x𝒫VtxGsSetIE|x=2=x𝒫V|x=2E:domE1-1x𝒫VtxGsSetIE|x=2E:domE1-1x𝒫V|x=2
12 10 11 syl φE:domE1-1x𝒫VtxGsSetIE|x=2E:domE1-1x𝒫V|x=2
13 6 12 mpbird φE:domE1-1x𝒫VtxGsSetIE|x=2
14 2 3 4 5 setsiedg φiEdgGsSetIE=E
15 14 dmeqd φdomiEdgGsSetIE=domE
16 eqidd φx𝒫VtxGsSetIE|x=2=x𝒫VtxGsSetIE|x=2
17 14 15 16 f1eq123d φiEdgGsSetIE:domiEdgGsSetIE1-1x𝒫VtxGsSetIE|x=2E:domE1-1x𝒫VtxGsSetIE|x=2
18 13 17 mpbird φiEdgGsSetIE:domiEdgGsSetIE1-1x𝒫VtxGsSetIE|x=2
19 ovex GsSetIEV
20 eqid VtxGsSetIE=VtxGsSetIE
21 eqid iEdgGsSetIE=iEdgGsSetIE
22 20 21 isusgrs GsSetIEVGsSetIEUSGraphiEdgGsSetIE:domiEdgGsSetIE1-1x𝒫VtxGsSetIE|x=2
23 19 22 mp1i φGsSetIEUSGraphiEdgGsSetIE:domiEdgGsSetIE1-1x𝒫VtxGsSetIE|x=2
24 18 23 mpbird φGsSetIEUSGraph