Metamath Proof Explorer


Theorem ustbas

Description: Recover the base of an uniform structure U . U. ran UnifOn is to UnifOn what Top is to TopOn . (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Hypothesis ustbas.1 X=domU
Assertion ustbas UranUnifOnUUnifOnX

Proof

Step Hyp Ref Expression
1 ustbas.1 X=domU
2 ustfn UnifOnFnV
3 fnfun UnifOnFnVFunUnifOn
4 elunirn FunUnifOnUranUnifOnxdomUnifOnUUnifOnx
5 2 3 4 mp2b UranUnifOnxdomUnifOnUUnifOnx
6 ustbas2 UUnifOnxx=domU
7 6 1 eqtr4di UUnifOnxx=X
8 7 fveq2d UUnifOnxUnifOnx=UnifOnX
9 8 eleq2d UUnifOnxUUnifOnxUUnifOnX
10 9 ibi UUnifOnxUUnifOnX
11 10 rexlimivw xdomUnifOnUUnifOnxUUnifOnX
12 5 11 sylbi UranUnifOnUUnifOnX
13 elfvunirn UUnifOnXUranUnifOn
14 12 13 impbii UranUnifOnUUnifOnX