Metamath Proof Explorer


Theorem ustfn

Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017)

Ref Expression
Assertion ustfn UnifOnFnV

Proof

Step Hyp Ref Expression
1 velpw u𝒫𝒫x×xu𝒫x×x
2 1 abbii u|u𝒫𝒫x×x=u|u𝒫x×x
3 abid2 u|u𝒫𝒫x×x=𝒫𝒫x×x
4 vex xV
5 4 4 xpex x×xV
6 5 pwex 𝒫x×xV
7 6 pwex 𝒫𝒫x×xV
8 3 7 eqeltri u|u𝒫𝒫x×xV
9 2 8 eqeltrri u|u𝒫x×xV
10 simp1 u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvu𝒫x×x
11 10 ss2abi u|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvu|u𝒫x×x
12 9 11 ssexi u|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvV
13 df-ust UnifOn=xVu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
14 12 13 fnmpti UnifOnFnV