Metamath Proof Explorer


Theorem uzdisj

Description: The first N elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Assertion uzdisj MN1N=

Proof

Step Hyp Ref Expression
1 elinel2 kMN1NkN
2 eluzle kNNk
3 1 2 syl kMN1NNk
4 eluzel2 kNN
5 1 4 syl kMN1NN
6 eluzelz kNk
7 1 6 syl kMN1Nk
8 zlem1lt NkNkN1<k
9 5 7 8 syl2anc kMN1NNkN1<k
10 3 9 mpbid kMN1NN1<k
11 7 zred kMN1Nk
12 peano2zm NN1
13 5 12 syl kMN1NN1
14 13 zred kMN1NN1
15 elinel1 kMN1NkMN1
16 elfzle2 kMN1kN1
17 15 16 syl kMN1NkN1
18 11 14 17 lensymd kMN1N¬N1<k
19 10 18 pm2.21dd kMN1Nk
20 19 ssriv MN1N
21 ss0 MN1NMN1N=
22 20 21 ax-mp MN1N=