Metamath Proof Explorer


Theorem uzind2

Description: Induction on the upper integers that startafter an integer M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005)

Ref Expression
Hypotheses uzind2.1 j=M+1φψ
uzind2.2 j=kφχ
uzind2.3 j=k+1φθ
uzind2.4 j=Nφτ
uzind2.5 Mψ
uzind2.6 MkM<kχθ
Assertion uzind2 MNM<Nτ

Proof

Step Hyp Ref Expression
1 uzind2.1 j=M+1φψ
2 uzind2.2 j=kφχ
3 uzind2.3 j=k+1φθ
4 uzind2.4 j=Nφτ
5 uzind2.5 Mψ
6 uzind2.6 MkM<kχθ
7 zltp1le MNM<NM+1N
8 peano2z MM+1
9 1 imbi2d j=M+1MφMψ
10 2 imbi2d j=kMφMχ
11 3 imbi2d j=k+1MφMθ
12 4 imbi2d j=NMφMτ
13 5 a1i M+1Mψ
14 zltp1le MkM<kM+1k
15 6 3expia MkM<kχθ
16 14 15 sylbird MkM+1kχθ
17 16 ex MkM+1kχθ
18 17 com3l kM+1kMχθ
19 18 imp kM+1kMχθ
20 19 3adant1 M+1kM+1kMχθ
21 20 a2d M+1kM+1kMχMθ
22 9 10 11 12 13 21 uzind M+1NM+1NMτ
23 22 3exp M+1NM+1NMτ
24 8 23 syl MNM+1NMτ
25 24 com34 MNMM+1Nτ
26 25 pm2.43a MNM+1Nτ
27 26 imp MNM+1Nτ
28 7 27 sylbid MNM<Nτ
29 28 3impia MNM<Nτ