Metamath Proof Explorer


Theorem uzinico2

Description: An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis uzinico2.1 φNM
Assertion uzinico2 φN=MN+∞

Proof

Step Hyp Ref Expression
1 uzinico2.1 φNM
2 inass MN+∞=MN+∞
3 2 a1i φMN+∞=MN+∞
4 incom MN+∞=N+∞M
5 4 a1i φMN+∞=N+∞M
6 uzssz M
7 6 a1i φM
8 7 1 sseldd φN
9 eqid N=N
10 8 9 uzinico φN=N+∞
11 10 eqcomd φN+∞=N
12 11 ineq1d φN+∞M=NM
13 1 uzssd φNM
14 df-ss NMNM=N
15 13 14 sylib φNM=N
16 5 12 15 3eqtrd φMN+∞=N
17 uzssz N
18 df-ss NN=N
19 17 18 mpbi N=N
20 19 a1i φN=N
21 20 eqcomd φN=N
22 3 16 21 3eqtrrd φN=MN+∞
23 df-ss MM=M
24 6 23 mpbi M=M
25 24 ineq1i MN+∞=MN+∞
26 25 a1i φMN+∞=MN+∞
27 22 20 26 3eqtr3d φN=MN+∞