Metamath Proof Explorer


Theorem uzm1

Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion uzm1 NMN=MN1M

Proof

Step Hyp Ref Expression
1 eluzel2 NMM
2 1 a1d NM¬N=MM
3 eluzelz NMN
4 peano2zm NN1
5 3 4 syl NMN1
6 5 a1d NM¬N=MN1
7 df-ne NM¬N=M
8 eluzle NMMN
9 1 zred NMM
10 eluzelre NMN
11 9 10 ltlend NMM<NMNNM
12 11 biimprd NMMNNMM<N
13 8 12 mpand NMNMM<N
14 7 13 biimtrrid NM¬N=MM<N
15 zltlem1 MNM<NMN1
16 1 3 15 syl2anc NMM<NMN1
17 14 16 sylibd NM¬N=MMN1
18 2 6 17 3jcad NM¬N=MMN1MN1
19 eluz2 N1MMN1MN1
20 18 19 syl6ibr NM¬N=MN1M
21 20 orrd NMN=MN1M