Metamath Proof Explorer


Theorem uzubioo2

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubioo2.1 φM
uzubioo2.2 Z=M
Assertion uzubioo2 φxkx+∞kZ

Proof

Step Hyp Ref Expression
1 uzubioo2.1 φM
2 uzubioo2.2 Z=M
3 1 adantr φyM
4 simpr φyy
5 3 2 4 uzubioo φyky+∞kZ
6 5 ralrimiva φyky+∞kZ
7 oveq1 x=yx+∞=y+∞
8 7 rexeqdv x=ykx+∞kZky+∞kZ
9 8 cbvralvw xkx+∞kZyky+∞kZ
10 6 9 sylibr φxkx+∞kZ