Metamath Proof Explorer


Theorem vcdir

Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vciOLD.1 G=1stW
vciOLD.2 S=2ndW
vciOLD.3 X=ranG
Assertion vcdir WCVecOLDABCXA+BSC=ASCGBSC

Proof

Step Hyp Ref Expression
1 vciOLD.1 G=1stW
2 vciOLD.2 S=2ndW
3 vciOLD.3 X=ranG
4 1 2 3 vciOLD WCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
5 simpl y+zSx=ySxGzSxyzSx=ySzSxy+zSx=ySxGzSx
6 5 ralimi zy+zSx=ySxGzSxyzSx=ySzSxzy+zSx=ySxGzSx
7 6 adantl zXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxzy+zSx=ySxGzSx
8 7 ralimi yzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxyzy+zSx=ySxGzSx
9 8 adantl 1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxyzy+zSx=ySxGzSx
10 9 ralimi xX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxxXyzy+zSx=ySxGzSx
11 10 3ad2ant3 GAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxxXyzy+zSx=ySxGzSx
12 4 11 syl WCVecOLDxXyzy+zSx=ySxGzSx
13 oveq2 x=Cy+zSx=y+zSC
14 oveq2 x=CySx=ySC
15 oveq2 x=CzSx=zSC
16 14 15 oveq12d x=CySxGzSx=ySCGzSC
17 13 16 eqeq12d x=Cy+zSx=ySxGzSxy+zSC=ySCGzSC
18 oveq1 y=Ay+z=A+z
19 18 oveq1d y=Ay+zSC=A+zSC
20 oveq1 y=AySC=ASC
21 20 oveq1d y=AySCGzSC=ASCGzSC
22 19 21 eqeq12d y=Ay+zSC=ySCGzSCA+zSC=ASCGzSC
23 oveq2 z=BA+z=A+B
24 23 oveq1d z=BA+zSC=A+BSC
25 oveq1 z=BzSC=BSC
26 25 oveq2d z=BASCGzSC=ASCGBSC
27 24 26 eqeq12d z=BA+zSC=ASCGzSCA+BSC=ASCGBSC
28 17 22 27 rspc3v CXABxXyzy+zSx=ySxGzSxA+BSC=ASCGBSC
29 12 28 syl5 CXABWCVecOLDA+BSC=ASCGBSC
30 29 3coml ABCXWCVecOLDA+BSC=ASCGBSC
31 30 impcom WCVecOLDABCXA+BSC=ASCGBSC