Metamath Proof Explorer


Theorem vcm

Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 25-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vcm.1 G=1stW
vcm.2 S=2ndW
vcm.3 X=ranG
vcm.4 M=invG
Assertion vcm WCVecOLDAX-1SA=MA

Proof

Step Hyp Ref Expression
1 vcm.1 G=1stW
2 vcm.2 S=2ndW
3 vcm.3 X=ranG
4 vcm.4 M=invG
5 1 vcgrp WCVecOLDGGrpOp
6 5 adantr WCVecOLDAXGGrpOp
7 neg1cn 1
8 1 2 3 vccl WCVecOLD1AX-1SAX
9 7 8 mp3an2 WCVecOLDAX-1SAX
10 eqid GIdG=GIdG
11 3 10 grporid GGrpOp-1SAX-1SAGGIdG=-1SA
12 6 9 11 syl2anc WCVecOLDAX-1SAGGIdG=-1SA
13 simpr WCVecOLDAXAX
14 3 4 grpoinvcl GGrpOpAXMAX
15 5 14 sylan WCVecOLDAXMAX
16 3 grpoass GGrpOp-1SAXAXMAX-1SAGAGMA=-1SAGAGMA
17 6 9 13 15 16 syl13anc WCVecOLDAX-1SAGAGMA=-1SAGAGMA
18 1 2 3 vcidOLD WCVecOLDAX1SA=A
19 18 oveq2d WCVecOLDAX-1SAG1SA=-1SAGA
20 ax-1cn 1
21 1pneg1e0 1+-1=0
22 20 7 21 addcomli -1+1=0
23 22 oveq1i -1+1SA=0SA
24 1 2 3 vcdir WCVecOLD11AX-1+1SA=-1SAG1SA
25 7 24 mp3anr1 WCVecOLD1AX-1+1SA=-1SAG1SA
26 20 25 mpanr1 WCVecOLDAX-1+1SA=-1SAG1SA
27 1 2 3 10 vc0 WCVecOLDAX0SA=GIdG
28 23 26 27 3eqtr3a WCVecOLDAX-1SAG1SA=GIdG
29 19 28 eqtr3d WCVecOLDAX-1SAGA=GIdG
30 29 oveq1d WCVecOLDAX-1SAGAGMA=GIdGGMA
31 17 30 eqtr3d WCVecOLDAX-1SAGAGMA=GIdGGMA
32 3 10 4 grporinv GGrpOpAXAGMA=GIdG
33 5 32 sylan WCVecOLDAXAGMA=GIdG
34 33 oveq2d WCVecOLDAX-1SAGAGMA=-1SAGGIdG
35 31 34 eqtr3d WCVecOLDAXGIdGGMA=-1SAGGIdG
36 3 10 grpolid GGrpOpMAXGIdGGMA=MA
37 6 15 36 syl2anc WCVecOLDAXGIdGGMA=MA
38 35 37 eqtr3d WCVecOLDAX-1SAGGIdG=MA
39 12 38 eqtr3d WCVecOLDAX-1SA=MA