Metamath Proof Explorer


Theorem vdgfrgrgt2

Description: Any vertex in a friendship graph (with more than one vertex - then, actually, the graph must have at least three vertices, because otherwise, it would not be a friendship graph) has at least degree 2, see remark 3 in MertziosUnger p. 153 (after Proposition 1): "It follows that deg(v) >= 2 for every node v of a friendship graph". (Contributed by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 5-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v V=VtxG
Assertion vdgfrgrgt2 GFriendGraphNV1<V2VtxDegGN

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v V=VtxG
2 1 vdgn0frgrv2 GFriendGraphNV1<VVtxDegGN0
3 2 imp GFriendGraphNV1<VVtxDegGN0
4 1 vdgn1frgrv2 GFriendGraphNV1<VVtxDegGN1
5 4 imp GFriendGraphNV1<VVtxDegGN1
6 1 vtxdgelxnn0 NVVtxDegGN0*
7 xnn0n0n1ge2b VtxDegGN0*VtxDegGN0VtxDegGN12VtxDegGN
8 6 7 syl NVVtxDegGN0VtxDegGN12VtxDegGN
9 8 ad2antlr GFriendGraphNV1<VVtxDegGN0VtxDegGN12VtxDegGN
10 3 5 9 mpbi2and GFriendGraphNV1<V2VtxDegGN
11 10 ex GFriendGraphNV1<V2VtxDegGN