Metamath Proof Explorer


Theorem vdgn0frgrv2

Description: A vertex in a friendship graph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v V=VtxG
Assertion vdgn0frgrv2 GFriendGraphNV1<VVtxDegGN0

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v V=VtxG
2 frgrconngr GFriendGraphGConnGraph
3 frgrusgr GFriendGraphGUSGraph
4 usgrumgr GUSGraphGUMGraph
5 3 4 syl GFriendGraphGUMGraph
6 1 vdn0conngrumgrv2 GConnGraphGUMGraphNV1<VVtxDegGN0
7 6 ex GConnGraphGUMGraphNV1<VVtxDegGN0
8 2 5 7 syl2anc GFriendGraphNV1<VVtxDegGN0
9 8 expdimp GFriendGraphNV1<VVtxDegGN0