Metamath Proof Explorer


Theorem vk15.4j

Description: Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j is vk15.4jVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vk15.4j.1 ¬x¬φxψ¬χ
vk15.4j.2 xχ¬xθτ
vk15.4j.3 ¬xτφ
Assertion vk15.4j ¬x¬θ¬xψ

Proof

Step Hyp Ref Expression
1 vk15.4j.1 ¬x¬φxψ¬χ
2 vk15.4j.2 xχ¬xθτ
3 vk15.4j.3 ¬xτφ
4 exanali xτ¬φ¬xτφ
5 3 4 mpbir xτ¬φ
6 alex xθ¬x¬θ
7 6 biimpri ¬x¬θxθ
8 7 19.21bi ¬x¬θθ
9 simpl τ¬φτ
10 9 a1i ¬x¬θτ¬φτ
11 19.8a θτxθτ
12 8 10 11 syl6an ¬x¬θτ¬φxθτ
13 notnot xθτ¬¬xθτ
14 12 13 syl6 ¬x¬θτ¬φ¬¬xθτ
15 con3 xχ¬xθτ¬¬xθτ¬xχ
16 2 14 15 mpsylsyld ¬x¬θτ¬φ¬xχ
17 hbe1 x¬θxx¬θ
18 17 hbn ¬x¬θx¬x¬θ
19 hbn1 ¬xχx¬xχ
20 5 16 18 19 eexinst01 ¬x¬θ¬xχ
21 exnal x¬χ¬xχ
22 20 21 sylibr ¬x¬θx¬χ
23 pm3.13 ¬x¬φxψ¬χ¬x¬φ¬xψ¬χ
24 1 23 ax-mp ¬x¬φ¬xψ¬χ
25 simpr τ¬φ¬φ
26 25 a1i ¬x¬θτ¬φ¬φ
27 19.8a ¬φx¬φ
28 26 27 syl6 ¬x¬θτ¬φx¬φ
29 hbe1 x¬φxx¬φ
30 5 28 18 29 eexinst01 ¬x¬θx¬φ
31 notnot x¬φ¬¬x¬φ
32 30 31 syl ¬x¬θ¬¬x¬φ
33 pm2.53 ¬x¬φ¬xψ¬χ¬¬x¬φ¬xψ¬χ
34 24 32 33 mpsyl ¬x¬θ¬xψ¬χ
35 exanali xψ¬χ¬xψχ
36 35 con5i ¬xψ¬χxψχ
37 34 36 syl ¬x¬θxψχ
38 37 19.21bi ¬x¬θψχ
39 38 con3d ¬x¬θ¬χ¬ψ
40 19.8a ¬ψx¬ψ
41 39 40 syl6 ¬x¬θ¬χx¬ψ
42 hbe1 x¬ψxx¬ψ
43 22 41 18 42 eexinst11 ¬x¬θx¬ψ
44 exnal x¬ψ¬xψ
45 43 44 sylib ¬x¬θ¬xψ